3.89/1.86 YES 3.89/1.87 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 3.89/1.87 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.89/1.87 3.89/1.87 3.89/1.87 Left Termination of the query pattern 3.89/1.87 3.89/1.87 rotate(g,a) 3.89/1.87 3.89/1.87 w.r.t. the given Prolog program could successfully be proven: 3.89/1.87 3.89/1.87 (0) Prolog 3.89/1.87 (1) PrologToPiTRSProof [SOUND, 0 ms] 3.89/1.87 (2) PiTRS 3.89/1.87 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 3.89/1.87 (4) PiDP 3.89/1.87 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 3.89/1.87 (6) AND 3.89/1.87 (7) PiDP 3.89/1.87 (8) UsableRulesProof [EQUIVALENT, 0 ms] 3.89/1.87 (9) PiDP 3.89/1.87 (10) PiDPToQDPProof [SOUND, 0 ms] 3.89/1.87 (11) QDP 3.89/1.87 (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.89/1.87 (13) YES 3.89/1.87 (14) PiDP 3.89/1.87 (15) UsableRulesProof [EQUIVALENT, 0 ms] 3.89/1.87 (16) PiDP 3.89/1.87 (17) PiDPToQDPProof [SOUND, 0 ms] 3.89/1.87 (18) QDP 3.89/1.87 (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.89/1.87 (20) YES 3.89/1.87 3.89/1.87 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (0) 3.89/1.87 Obligation: 3.89/1.87 Clauses: 3.89/1.87 3.89/1.87 rotate(X, Y) :- ','(append2(A, B, X), append1(B, A, Y)). 3.89/1.87 append1(.(X, Xs), Ys, .(X, Zs)) :- append1(Xs, Ys, Zs). 3.89/1.87 append1([], Ys, Ys). 3.89/1.87 append2(.(X, Xs), Ys, .(X, Zs)) :- append2(Xs, Ys, Zs). 3.89/1.87 append2([], Ys, Ys). 3.89/1.87 3.89/1.87 3.89/1.87 Query: rotate(g,a) 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (1) PrologToPiTRSProof (SOUND) 3.89/1.87 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 3.89/1.87 3.89/1.87 rotate_in_2: (b,f) 3.89/1.87 3.89/1.87 append2_in_3: (f,f,b) 3.89/1.87 3.89/1.87 append1_in_3: (b,b,f) 3.89/1.87 3.89/1.87 Transforming Prolog into the following Term Rewriting System: 3.89/1.87 3.89/1.87 Pi-finite rewrite system: 3.89/1.87 The TRS R consists of the following rules: 3.89/1.87 3.89/1.87 rotate_in_ga(X, Y) -> U1_ga(X, Y, append2_in_aag(A, B, X)) 3.89/1.87 append2_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U4_aag(X, Xs, Ys, Zs, append2_in_aag(Xs, Ys, Zs)) 3.89/1.87 append2_in_aag([], Ys, Ys) -> append2_out_aag([], Ys, Ys) 3.89/1.87 U4_aag(X, Xs, Ys, Zs, append2_out_aag(Xs, Ys, Zs)) -> append2_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.89/1.87 U1_ga(X, Y, append2_out_aag(A, B, X)) -> U2_ga(X, Y, append1_in_gga(B, A, Y)) 3.89/1.87 append1_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U3_gga(X, Xs, Ys, Zs, append1_in_gga(Xs, Ys, Zs)) 3.89/1.87 append1_in_gga([], Ys, Ys) -> append1_out_gga([], Ys, Ys) 3.89/1.87 U3_gga(X, Xs, Ys, Zs, append1_out_gga(Xs, Ys, Zs)) -> append1_out_gga(.(X, Xs), Ys, .(X, Zs)) 3.89/1.87 U2_ga(X, Y, append1_out_gga(B, A, Y)) -> rotate_out_ga(X, Y) 3.89/1.87 3.89/1.87 The argument filtering Pi contains the following mapping: 3.89/1.87 rotate_in_ga(x1, x2) = rotate_in_ga(x1) 3.89/1.87 3.89/1.87 U1_ga(x1, x2, x3) = U1_ga(x3) 3.89/1.87 3.89/1.87 append2_in_aag(x1, x2, x3) = append2_in_aag(x3) 3.89/1.87 3.89/1.87 .(x1, x2) = .(x1, x2) 3.89/1.87 3.89/1.87 U4_aag(x1, x2, x3, x4, x5) = U4_aag(x1, x5) 3.89/1.87 3.89/1.87 append2_out_aag(x1, x2, x3) = append2_out_aag(x1, x2) 3.89/1.87 3.89/1.87 U2_ga(x1, x2, x3) = U2_ga(x3) 3.89/1.87 3.89/1.87 append1_in_gga(x1, x2, x3) = append1_in_gga(x1, x2) 3.89/1.87 3.89/1.87 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x1, x5) 3.89/1.87 3.89/1.87 [] = [] 3.89/1.87 3.89/1.87 append1_out_gga(x1, x2, x3) = append1_out_gga(x3) 3.89/1.87 3.89/1.87 rotate_out_ga(x1, x2) = rotate_out_ga(x2) 3.89/1.87 3.89/1.87 3.89/1.87 3.89/1.87 3.89/1.87 3.89/1.87 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 3.89/1.87 3.89/1.87 3.89/1.87 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (2) 3.89/1.87 Obligation: 3.89/1.87 Pi-finite rewrite system: 3.89/1.87 The TRS R consists of the following rules: 3.89/1.87 3.89/1.87 rotate_in_ga(X, Y) -> U1_ga(X, Y, append2_in_aag(A, B, X)) 3.89/1.87 append2_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U4_aag(X, Xs, Ys, Zs, append2_in_aag(Xs, Ys, Zs)) 3.89/1.87 append2_in_aag([], Ys, Ys) -> append2_out_aag([], Ys, Ys) 3.89/1.87 U4_aag(X, Xs, Ys, Zs, append2_out_aag(Xs, Ys, Zs)) -> append2_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.89/1.87 U1_ga(X, Y, append2_out_aag(A, B, X)) -> U2_ga(X, Y, append1_in_gga(B, A, Y)) 3.89/1.87 append1_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U3_gga(X, Xs, Ys, Zs, append1_in_gga(Xs, Ys, Zs)) 3.89/1.87 append1_in_gga([], Ys, Ys) -> append1_out_gga([], Ys, Ys) 3.89/1.87 U3_gga(X, Xs, Ys, Zs, append1_out_gga(Xs, Ys, Zs)) -> append1_out_gga(.(X, Xs), Ys, .(X, Zs)) 3.89/1.87 U2_ga(X, Y, append1_out_gga(B, A, Y)) -> rotate_out_ga(X, Y) 3.89/1.87 3.89/1.87 The argument filtering Pi contains the following mapping: 3.89/1.87 rotate_in_ga(x1, x2) = rotate_in_ga(x1) 3.89/1.87 3.89/1.87 U1_ga(x1, x2, x3) = U1_ga(x3) 3.89/1.87 3.89/1.87 append2_in_aag(x1, x2, x3) = append2_in_aag(x3) 3.89/1.87 3.89/1.87 .(x1, x2) = .(x1, x2) 3.89/1.87 3.89/1.87 U4_aag(x1, x2, x3, x4, x5) = U4_aag(x1, x5) 3.89/1.87 3.89/1.87 append2_out_aag(x1, x2, x3) = append2_out_aag(x1, x2) 3.89/1.87 3.89/1.87 U2_ga(x1, x2, x3) = U2_ga(x3) 3.89/1.87 3.89/1.87 append1_in_gga(x1, x2, x3) = append1_in_gga(x1, x2) 3.89/1.87 3.89/1.87 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x1, x5) 3.89/1.87 3.89/1.87 [] = [] 3.89/1.87 3.89/1.87 append1_out_gga(x1, x2, x3) = append1_out_gga(x3) 3.89/1.87 3.89/1.87 rotate_out_ga(x1, x2) = rotate_out_ga(x2) 3.89/1.87 3.89/1.87 3.89/1.87 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (3) DependencyPairsProof (EQUIVALENT) 3.89/1.87 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 3.89/1.87 Pi DP problem: 3.89/1.87 The TRS P consists of the following rules: 3.89/1.87 3.89/1.87 ROTATE_IN_GA(X, Y) -> U1_GA(X, Y, append2_in_aag(A, B, X)) 3.89/1.87 ROTATE_IN_GA(X, Y) -> APPEND2_IN_AAG(A, B, X) 3.89/1.87 APPEND2_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> U4_AAG(X, Xs, Ys, Zs, append2_in_aag(Xs, Ys, Zs)) 3.89/1.87 APPEND2_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APPEND2_IN_AAG(Xs, Ys, Zs) 3.89/1.87 U1_GA(X, Y, append2_out_aag(A, B, X)) -> U2_GA(X, Y, append1_in_gga(B, A, Y)) 3.89/1.87 U1_GA(X, Y, append2_out_aag(A, B, X)) -> APPEND1_IN_GGA(B, A, Y) 3.89/1.87 APPEND1_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> U3_GGA(X, Xs, Ys, Zs, append1_in_gga(Xs, Ys, Zs)) 3.89/1.87 APPEND1_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> APPEND1_IN_GGA(Xs, Ys, Zs) 3.89/1.87 3.89/1.87 The TRS R consists of the following rules: 3.89/1.87 3.89/1.87 rotate_in_ga(X, Y) -> U1_ga(X, Y, append2_in_aag(A, B, X)) 3.89/1.87 append2_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U4_aag(X, Xs, Ys, Zs, append2_in_aag(Xs, Ys, Zs)) 3.89/1.87 append2_in_aag([], Ys, Ys) -> append2_out_aag([], Ys, Ys) 3.89/1.87 U4_aag(X, Xs, Ys, Zs, append2_out_aag(Xs, Ys, Zs)) -> append2_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.89/1.87 U1_ga(X, Y, append2_out_aag(A, B, X)) -> U2_ga(X, Y, append1_in_gga(B, A, Y)) 3.89/1.87 append1_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U3_gga(X, Xs, Ys, Zs, append1_in_gga(Xs, Ys, Zs)) 3.89/1.87 append1_in_gga([], Ys, Ys) -> append1_out_gga([], Ys, Ys) 3.89/1.87 U3_gga(X, Xs, Ys, Zs, append1_out_gga(Xs, Ys, Zs)) -> append1_out_gga(.(X, Xs), Ys, .(X, Zs)) 3.89/1.87 U2_ga(X, Y, append1_out_gga(B, A, Y)) -> rotate_out_ga(X, Y) 3.89/1.87 3.89/1.87 The argument filtering Pi contains the following mapping: 3.89/1.87 rotate_in_ga(x1, x2) = rotate_in_ga(x1) 3.89/1.87 3.89/1.87 U1_ga(x1, x2, x3) = U1_ga(x3) 3.89/1.87 3.89/1.87 append2_in_aag(x1, x2, x3) = append2_in_aag(x3) 3.89/1.87 3.89/1.87 .(x1, x2) = .(x1, x2) 3.89/1.87 3.89/1.87 U4_aag(x1, x2, x3, x4, x5) = U4_aag(x1, x5) 3.89/1.87 3.89/1.87 append2_out_aag(x1, x2, x3) = append2_out_aag(x1, x2) 3.89/1.87 3.89/1.87 U2_ga(x1, x2, x3) = U2_ga(x3) 3.89/1.87 3.89/1.87 append1_in_gga(x1, x2, x3) = append1_in_gga(x1, x2) 3.89/1.87 3.89/1.87 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x1, x5) 3.89/1.87 3.89/1.87 [] = [] 3.89/1.87 3.89/1.87 append1_out_gga(x1, x2, x3) = append1_out_gga(x3) 3.89/1.87 3.89/1.87 rotate_out_ga(x1, x2) = rotate_out_ga(x2) 3.89/1.87 3.89/1.87 ROTATE_IN_GA(x1, x2) = ROTATE_IN_GA(x1) 3.89/1.87 3.89/1.87 U1_GA(x1, x2, x3) = U1_GA(x3) 3.89/1.87 3.89/1.87 APPEND2_IN_AAG(x1, x2, x3) = APPEND2_IN_AAG(x3) 3.89/1.87 3.89/1.87 U4_AAG(x1, x2, x3, x4, x5) = U4_AAG(x1, x5) 3.89/1.87 3.89/1.87 U2_GA(x1, x2, x3) = U2_GA(x3) 3.89/1.87 3.89/1.87 APPEND1_IN_GGA(x1, x2, x3) = APPEND1_IN_GGA(x1, x2) 3.89/1.87 3.89/1.87 U3_GGA(x1, x2, x3, x4, x5) = U3_GGA(x1, x5) 3.89/1.87 3.89/1.87 3.89/1.87 We have to consider all (P,R,Pi)-chains 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (4) 3.89/1.87 Obligation: 3.89/1.87 Pi DP problem: 3.89/1.87 The TRS P consists of the following rules: 3.89/1.87 3.89/1.87 ROTATE_IN_GA(X, Y) -> U1_GA(X, Y, append2_in_aag(A, B, X)) 3.89/1.87 ROTATE_IN_GA(X, Y) -> APPEND2_IN_AAG(A, B, X) 3.89/1.87 APPEND2_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> U4_AAG(X, Xs, Ys, Zs, append2_in_aag(Xs, Ys, Zs)) 3.89/1.87 APPEND2_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APPEND2_IN_AAG(Xs, Ys, Zs) 3.89/1.87 U1_GA(X, Y, append2_out_aag(A, B, X)) -> U2_GA(X, Y, append1_in_gga(B, A, Y)) 3.89/1.87 U1_GA(X, Y, append2_out_aag(A, B, X)) -> APPEND1_IN_GGA(B, A, Y) 3.89/1.87 APPEND1_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> U3_GGA(X, Xs, Ys, Zs, append1_in_gga(Xs, Ys, Zs)) 3.89/1.87 APPEND1_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> APPEND1_IN_GGA(Xs, Ys, Zs) 3.89/1.87 3.89/1.87 The TRS R consists of the following rules: 3.89/1.87 3.89/1.87 rotate_in_ga(X, Y) -> U1_ga(X, Y, append2_in_aag(A, B, X)) 3.89/1.87 append2_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U4_aag(X, Xs, Ys, Zs, append2_in_aag(Xs, Ys, Zs)) 3.89/1.87 append2_in_aag([], Ys, Ys) -> append2_out_aag([], Ys, Ys) 3.89/1.87 U4_aag(X, Xs, Ys, Zs, append2_out_aag(Xs, Ys, Zs)) -> append2_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.89/1.87 U1_ga(X, Y, append2_out_aag(A, B, X)) -> U2_ga(X, Y, append1_in_gga(B, A, Y)) 3.89/1.87 append1_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U3_gga(X, Xs, Ys, Zs, append1_in_gga(Xs, Ys, Zs)) 3.89/1.87 append1_in_gga([], Ys, Ys) -> append1_out_gga([], Ys, Ys) 3.89/1.87 U3_gga(X, Xs, Ys, Zs, append1_out_gga(Xs, Ys, Zs)) -> append1_out_gga(.(X, Xs), Ys, .(X, Zs)) 3.89/1.87 U2_ga(X, Y, append1_out_gga(B, A, Y)) -> rotate_out_ga(X, Y) 3.89/1.87 3.89/1.87 The argument filtering Pi contains the following mapping: 3.89/1.87 rotate_in_ga(x1, x2) = rotate_in_ga(x1) 3.89/1.87 3.89/1.87 U1_ga(x1, x2, x3) = U1_ga(x3) 3.89/1.87 3.89/1.87 append2_in_aag(x1, x2, x3) = append2_in_aag(x3) 3.89/1.87 3.89/1.87 .(x1, x2) = .(x1, x2) 3.89/1.87 3.89/1.87 U4_aag(x1, x2, x3, x4, x5) = U4_aag(x1, x5) 3.89/1.87 3.89/1.87 append2_out_aag(x1, x2, x3) = append2_out_aag(x1, x2) 3.89/1.87 3.89/1.87 U2_ga(x1, x2, x3) = U2_ga(x3) 3.89/1.87 3.89/1.87 append1_in_gga(x1, x2, x3) = append1_in_gga(x1, x2) 3.89/1.87 3.89/1.87 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x1, x5) 3.89/1.87 3.89/1.87 [] = [] 3.89/1.87 3.89/1.87 append1_out_gga(x1, x2, x3) = append1_out_gga(x3) 3.89/1.87 3.89/1.87 rotate_out_ga(x1, x2) = rotate_out_ga(x2) 3.89/1.87 3.89/1.87 ROTATE_IN_GA(x1, x2) = ROTATE_IN_GA(x1) 3.89/1.87 3.89/1.87 U1_GA(x1, x2, x3) = U1_GA(x3) 3.89/1.87 3.89/1.87 APPEND2_IN_AAG(x1, x2, x3) = APPEND2_IN_AAG(x3) 3.89/1.87 3.89/1.87 U4_AAG(x1, x2, x3, x4, x5) = U4_AAG(x1, x5) 3.89/1.87 3.89/1.87 U2_GA(x1, x2, x3) = U2_GA(x3) 3.89/1.87 3.89/1.87 APPEND1_IN_GGA(x1, x2, x3) = APPEND1_IN_GGA(x1, x2) 3.89/1.87 3.89/1.87 U3_GGA(x1, x2, x3, x4, x5) = U3_GGA(x1, x5) 3.89/1.87 3.89/1.87 3.89/1.87 We have to consider all (P,R,Pi)-chains 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (5) DependencyGraphProof (EQUIVALENT) 3.89/1.87 The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes. 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (6) 3.89/1.87 Complex Obligation (AND) 3.89/1.87 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (7) 3.89/1.87 Obligation: 3.89/1.87 Pi DP problem: 3.89/1.87 The TRS P consists of the following rules: 3.89/1.87 3.89/1.87 APPEND1_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> APPEND1_IN_GGA(Xs, Ys, Zs) 3.89/1.87 3.89/1.87 The TRS R consists of the following rules: 3.89/1.87 3.89/1.87 rotate_in_ga(X, Y) -> U1_ga(X, Y, append2_in_aag(A, B, X)) 3.89/1.87 append2_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U4_aag(X, Xs, Ys, Zs, append2_in_aag(Xs, Ys, Zs)) 3.89/1.87 append2_in_aag([], Ys, Ys) -> append2_out_aag([], Ys, Ys) 3.89/1.87 U4_aag(X, Xs, Ys, Zs, append2_out_aag(Xs, Ys, Zs)) -> append2_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.89/1.87 U1_ga(X, Y, append2_out_aag(A, B, X)) -> U2_ga(X, Y, append1_in_gga(B, A, Y)) 3.89/1.87 append1_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U3_gga(X, Xs, Ys, Zs, append1_in_gga(Xs, Ys, Zs)) 3.89/1.87 append1_in_gga([], Ys, Ys) -> append1_out_gga([], Ys, Ys) 3.89/1.87 U3_gga(X, Xs, Ys, Zs, append1_out_gga(Xs, Ys, Zs)) -> append1_out_gga(.(X, Xs), Ys, .(X, Zs)) 3.89/1.87 U2_ga(X, Y, append1_out_gga(B, A, Y)) -> rotate_out_ga(X, Y) 3.89/1.87 3.89/1.87 The argument filtering Pi contains the following mapping: 3.89/1.87 rotate_in_ga(x1, x2) = rotate_in_ga(x1) 3.89/1.87 3.89/1.87 U1_ga(x1, x2, x3) = U1_ga(x3) 3.89/1.87 3.89/1.87 append2_in_aag(x1, x2, x3) = append2_in_aag(x3) 3.89/1.87 3.89/1.87 .(x1, x2) = .(x1, x2) 3.89/1.87 3.89/1.87 U4_aag(x1, x2, x3, x4, x5) = U4_aag(x1, x5) 3.89/1.87 3.89/1.87 append2_out_aag(x1, x2, x3) = append2_out_aag(x1, x2) 3.89/1.87 3.89/1.87 U2_ga(x1, x2, x3) = U2_ga(x3) 3.89/1.87 3.89/1.87 append1_in_gga(x1, x2, x3) = append1_in_gga(x1, x2) 3.89/1.87 3.89/1.87 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x1, x5) 3.89/1.87 3.89/1.87 [] = [] 3.89/1.87 3.89/1.87 append1_out_gga(x1, x2, x3) = append1_out_gga(x3) 3.89/1.87 3.89/1.87 rotate_out_ga(x1, x2) = rotate_out_ga(x2) 3.89/1.87 3.89/1.87 APPEND1_IN_GGA(x1, x2, x3) = APPEND1_IN_GGA(x1, x2) 3.89/1.87 3.89/1.87 3.89/1.87 We have to consider all (P,R,Pi)-chains 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (8) UsableRulesProof (EQUIVALENT) 3.89/1.87 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (9) 3.89/1.87 Obligation: 3.89/1.87 Pi DP problem: 3.89/1.87 The TRS P consists of the following rules: 3.89/1.87 3.89/1.87 APPEND1_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> APPEND1_IN_GGA(Xs, Ys, Zs) 3.89/1.87 3.89/1.87 R is empty. 3.89/1.87 The argument filtering Pi contains the following mapping: 3.89/1.87 .(x1, x2) = .(x1, x2) 3.89/1.87 3.89/1.87 APPEND1_IN_GGA(x1, x2, x3) = APPEND1_IN_GGA(x1, x2) 3.89/1.87 3.89/1.87 3.89/1.87 We have to consider all (P,R,Pi)-chains 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (10) PiDPToQDPProof (SOUND) 3.89/1.87 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (11) 3.89/1.87 Obligation: 3.89/1.87 Q DP problem: 3.89/1.87 The TRS P consists of the following rules: 3.89/1.87 3.89/1.87 APPEND1_IN_GGA(.(X, Xs), Ys) -> APPEND1_IN_GGA(Xs, Ys) 3.89/1.87 3.89/1.87 R is empty. 3.89/1.87 Q is empty. 3.89/1.87 We have to consider all (P,Q,R)-chains. 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (12) QDPSizeChangeProof (EQUIVALENT) 3.89/1.87 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.89/1.87 3.89/1.87 From the DPs we obtained the following set of size-change graphs: 3.89/1.87 *APPEND1_IN_GGA(.(X, Xs), Ys) -> APPEND1_IN_GGA(Xs, Ys) 3.89/1.87 The graph contains the following edges 1 > 1, 2 >= 2 3.89/1.87 3.89/1.87 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (13) 3.89/1.87 YES 3.89/1.87 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (14) 3.89/1.87 Obligation: 3.89/1.87 Pi DP problem: 3.89/1.87 The TRS P consists of the following rules: 3.89/1.87 3.89/1.87 APPEND2_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APPEND2_IN_AAG(Xs, Ys, Zs) 3.89/1.87 3.89/1.87 The TRS R consists of the following rules: 3.89/1.87 3.89/1.87 rotate_in_ga(X, Y) -> U1_ga(X, Y, append2_in_aag(A, B, X)) 3.89/1.87 append2_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U4_aag(X, Xs, Ys, Zs, append2_in_aag(Xs, Ys, Zs)) 3.89/1.87 append2_in_aag([], Ys, Ys) -> append2_out_aag([], Ys, Ys) 3.89/1.87 U4_aag(X, Xs, Ys, Zs, append2_out_aag(Xs, Ys, Zs)) -> append2_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.89/1.87 U1_ga(X, Y, append2_out_aag(A, B, X)) -> U2_ga(X, Y, append1_in_gga(B, A, Y)) 3.89/1.87 append1_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U3_gga(X, Xs, Ys, Zs, append1_in_gga(Xs, Ys, Zs)) 3.89/1.87 append1_in_gga([], Ys, Ys) -> append1_out_gga([], Ys, Ys) 3.89/1.87 U3_gga(X, Xs, Ys, Zs, append1_out_gga(Xs, Ys, Zs)) -> append1_out_gga(.(X, Xs), Ys, .(X, Zs)) 3.89/1.87 U2_ga(X, Y, append1_out_gga(B, A, Y)) -> rotate_out_ga(X, Y) 3.89/1.87 3.89/1.87 The argument filtering Pi contains the following mapping: 3.89/1.87 rotate_in_ga(x1, x2) = rotate_in_ga(x1) 3.89/1.87 3.89/1.87 U1_ga(x1, x2, x3) = U1_ga(x3) 3.89/1.87 3.89/1.87 append2_in_aag(x1, x2, x3) = append2_in_aag(x3) 3.89/1.87 3.89/1.87 .(x1, x2) = .(x1, x2) 3.89/1.87 3.89/1.87 U4_aag(x1, x2, x3, x4, x5) = U4_aag(x1, x5) 3.89/1.87 3.89/1.87 append2_out_aag(x1, x2, x3) = append2_out_aag(x1, x2) 3.89/1.87 3.89/1.87 U2_ga(x1, x2, x3) = U2_ga(x3) 3.89/1.87 3.89/1.87 append1_in_gga(x1, x2, x3) = append1_in_gga(x1, x2) 3.89/1.87 3.89/1.87 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x1, x5) 3.89/1.87 3.89/1.87 [] = [] 3.89/1.87 3.89/1.87 append1_out_gga(x1, x2, x3) = append1_out_gga(x3) 3.89/1.87 3.89/1.87 rotate_out_ga(x1, x2) = rotate_out_ga(x2) 3.89/1.87 3.89/1.87 APPEND2_IN_AAG(x1, x2, x3) = APPEND2_IN_AAG(x3) 3.89/1.87 3.89/1.87 3.89/1.87 We have to consider all (P,R,Pi)-chains 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (15) UsableRulesProof (EQUIVALENT) 3.89/1.87 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (16) 3.89/1.87 Obligation: 3.89/1.87 Pi DP problem: 3.89/1.87 The TRS P consists of the following rules: 3.89/1.87 3.89/1.87 APPEND2_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APPEND2_IN_AAG(Xs, Ys, Zs) 3.89/1.87 3.89/1.87 R is empty. 3.89/1.87 The argument filtering Pi contains the following mapping: 3.89/1.87 .(x1, x2) = .(x1, x2) 3.89/1.87 3.89/1.87 APPEND2_IN_AAG(x1, x2, x3) = APPEND2_IN_AAG(x3) 3.89/1.87 3.89/1.87 3.89/1.87 We have to consider all (P,R,Pi)-chains 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (17) PiDPToQDPProof (SOUND) 3.89/1.87 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (18) 3.89/1.87 Obligation: 3.89/1.87 Q DP problem: 3.89/1.87 The TRS P consists of the following rules: 3.89/1.87 3.89/1.87 APPEND2_IN_AAG(.(X, Zs)) -> APPEND2_IN_AAG(Zs) 3.89/1.87 3.89/1.87 R is empty. 3.89/1.87 Q is empty. 3.89/1.87 We have to consider all (P,Q,R)-chains. 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (19) QDPSizeChangeProof (EQUIVALENT) 3.89/1.87 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.89/1.87 3.89/1.87 From the DPs we obtained the following set of size-change graphs: 3.89/1.87 *APPEND2_IN_AAG(.(X, Zs)) -> APPEND2_IN_AAG(Zs) 3.89/1.87 The graph contains the following edges 1 > 1 3.89/1.87 3.89/1.87 3.89/1.87 ---------------------------------------- 3.89/1.87 3.89/1.87 (20) 3.89/1.87 YES 4.15/2.01 EOF