4.22/1.96 YES 4.22/1.97 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 4.22/1.97 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.22/1.97 4.22/1.97 4.22/1.97 Left Termination of the query pattern 4.22/1.97 4.22/1.97 sublist(g,g) 4.22/1.97 4.22/1.97 w.r.t. the given Prolog program could successfully be proven: 4.22/1.97 4.22/1.97 (0) Prolog 4.22/1.97 (1) PrologToPiTRSProof [SOUND, 0 ms] 4.22/1.97 (2) PiTRS 4.22/1.97 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 4.22/1.97 (4) PiDP 4.22/1.97 (5) DependencyGraphProof [EQUIVALENT, 3 ms] 4.22/1.97 (6) AND 4.22/1.97 (7) PiDP 4.22/1.97 (8) UsableRulesProof [EQUIVALENT, 0 ms] 4.22/1.97 (9) PiDP 4.22/1.97 (10) PiDPToQDPProof [SOUND, 11 ms] 4.22/1.97 (11) QDP 4.22/1.97 (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] 4.22/1.97 (13) YES 4.22/1.97 (14) PiDP 4.22/1.97 (15) UsableRulesProof [EQUIVALENT, 0 ms] 4.22/1.97 (16) PiDP 4.22/1.97 (17) PiDPToQDPProof [SOUND, 0 ms] 4.22/1.97 (18) QDP 4.22/1.97 (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] 4.22/1.97 (20) YES 4.22/1.97 4.22/1.97 4.22/1.97 ---------------------------------------- 4.22/1.97 4.22/1.97 (0) 4.22/1.97 Obligation: 4.22/1.97 Clauses: 4.22/1.97 4.22/1.97 append1([], Ys, Ys). 4.22/1.97 append1(.(X, Xs), Ys, .(X, Zs)) :- append1(Xs, Ys, Zs). 4.22/1.97 append2([], Ys, Ys). 4.22/1.97 append2(.(X, Xs), Ys, .(X, Zs)) :- append2(Xs, Ys, Zs). 4.22/1.97 sublist(X, Y) :- ','(append1(P, X1, Y), append2(X2, X, P)). 4.22/1.97 4.22/1.97 4.22/1.97 Query: sublist(g,g) 4.22/1.97 ---------------------------------------- 4.22/1.97 4.22/1.97 (1) PrologToPiTRSProof (SOUND) 4.22/1.97 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 4.22/1.97 4.22/1.97 sublist_in_2: (b,b) 4.22/1.97 4.22/1.97 append1_in_3: (f,f,b) 4.22/1.97 4.22/1.97 append2_in_3: (f,b,b) 4.22/1.97 4.22/1.97 Transforming Prolog into the following Term Rewriting System: 4.22/1.97 4.22/1.97 Pi-finite rewrite system: 4.22/1.97 The TRS R consists of the following rules: 4.22/1.97 4.22/1.97 sublist_in_gg(X, Y) -> U3_gg(X, Y, append1_in_aag(P, X1, Y)) 4.22/1.97 append1_in_aag([], Ys, Ys) -> append1_out_aag([], Ys, Ys) 4.22/1.97 append1_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U1_aag(X, Xs, Ys, Zs, append1_in_aag(Xs, Ys, Zs)) 4.22/1.97 U1_aag(X, Xs, Ys, Zs, append1_out_aag(Xs, Ys, Zs)) -> append1_out_aag(.(X, Xs), Ys, .(X, Zs)) 4.22/1.97 U3_gg(X, Y, append1_out_aag(P, X1, Y)) -> U4_gg(X, Y, append2_in_agg(X2, X, P)) 4.22/1.97 append2_in_agg([], Ys, Ys) -> append2_out_agg([], Ys, Ys) 4.22/1.97 append2_in_agg(.(X, Xs), Ys, .(X, Zs)) -> U2_agg(X, Xs, Ys, Zs, append2_in_agg(Xs, Ys, Zs)) 4.22/1.97 U2_agg(X, Xs, Ys, Zs, append2_out_agg(Xs, Ys, Zs)) -> append2_out_agg(.(X, Xs), Ys, .(X, Zs)) 4.22/1.97 U4_gg(X, Y, append2_out_agg(X2, X, P)) -> sublist_out_gg(X, Y) 4.22/1.97 4.22/1.97 The argument filtering Pi contains the following mapping: 4.22/1.97 sublist_in_gg(x1, x2) = sublist_in_gg(x1, x2) 4.22/1.97 4.22/1.97 U3_gg(x1, x2, x3) = U3_gg(x1, x3) 4.22/1.97 4.22/1.97 append1_in_aag(x1, x2, x3) = append1_in_aag(x3) 4.22/1.97 4.22/1.97 append1_out_aag(x1, x2, x3) = append1_out_aag(x1, x2) 4.22/1.97 4.22/1.97 .(x1, x2) = .(x1, x2) 4.22/1.97 4.22/1.97 U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5) 4.22/1.97 4.22/1.97 U4_gg(x1, x2, x3) = U4_gg(x3) 4.22/1.97 4.22/1.97 append2_in_agg(x1, x2, x3) = append2_in_agg(x2, x3) 4.22/1.97 4.22/1.97 append2_out_agg(x1, x2, x3) = append2_out_agg(x1) 4.22/1.97 4.22/1.97 U2_agg(x1, x2, x3, x4, x5) = U2_agg(x1, x5) 4.22/1.97 4.22/1.97 sublist_out_gg(x1, x2) = sublist_out_gg 4.22/1.97 4.22/1.97 4.22/1.97 4.22/1.97 4.22/1.97 4.22/1.97 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 4.22/1.97 4.22/1.97 4.22/1.97 4.22/1.97 ---------------------------------------- 4.22/1.97 4.22/1.97 (2) 4.22/1.97 Obligation: 4.22/1.97 Pi-finite rewrite system: 4.22/1.97 The TRS R consists of the following rules: 4.22/1.97 4.22/1.97 sublist_in_gg(X, Y) -> U3_gg(X, Y, append1_in_aag(P, X1, Y)) 4.22/1.97 append1_in_aag([], Ys, Ys) -> append1_out_aag([], Ys, Ys) 4.22/1.97 append1_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U1_aag(X, Xs, Ys, Zs, append1_in_aag(Xs, Ys, Zs)) 4.22/1.97 U1_aag(X, Xs, Ys, Zs, append1_out_aag(Xs, Ys, Zs)) -> append1_out_aag(.(X, Xs), Ys, .(X, Zs)) 4.22/1.97 U3_gg(X, Y, append1_out_aag(P, X1, Y)) -> U4_gg(X, Y, append2_in_agg(X2, X, P)) 4.22/1.97 append2_in_agg([], Ys, Ys) -> append2_out_agg([], Ys, Ys) 4.22/1.97 append2_in_agg(.(X, Xs), Ys, .(X, Zs)) -> U2_agg(X, Xs, Ys, Zs, append2_in_agg(Xs, Ys, Zs)) 4.22/1.97 U2_agg(X, Xs, Ys, Zs, append2_out_agg(Xs, Ys, Zs)) -> append2_out_agg(.(X, Xs), Ys, .(X, Zs)) 4.22/1.97 U4_gg(X, Y, append2_out_agg(X2, X, P)) -> sublist_out_gg(X, Y) 4.22/1.97 4.22/1.97 The argument filtering Pi contains the following mapping: 4.22/1.97 sublist_in_gg(x1, x2) = sublist_in_gg(x1, x2) 4.22/1.97 4.22/1.97 U3_gg(x1, x2, x3) = U3_gg(x1, x3) 4.22/1.97 4.22/1.97 append1_in_aag(x1, x2, x3) = append1_in_aag(x3) 4.22/1.97 4.22/1.97 append1_out_aag(x1, x2, x3) = append1_out_aag(x1, x2) 4.22/1.97 4.22/1.97 .(x1, x2) = .(x1, x2) 4.22/1.97 4.22/1.97 U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5) 4.22/1.97 4.22/1.97 U4_gg(x1, x2, x3) = U4_gg(x3) 4.22/1.97 4.22/1.97 append2_in_agg(x1, x2, x3) = append2_in_agg(x2, x3) 4.22/1.97 4.22/1.97 append2_out_agg(x1, x2, x3) = append2_out_agg(x1) 4.22/1.97 4.22/1.97 U2_agg(x1, x2, x3, x4, x5) = U2_agg(x1, x5) 4.22/1.97 4.22/1.97 sublist_out_gg(x1, x2) = sublist_out_gg 4.22/1.97 4.22/1.97 4.22/1.97 4.22/1.97 ---------------------------------------- 4.22/1.97 4.22/1.97 (3) DependencyPairsProof (EQUIVALENT) 4.22/1.97 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 4.22/1.97 Pi DP problem: 4.22/1.97 The TRS P consists of the following rules: 4.22/1.97 4.22/1.97 SUBLIST_IN_GG(X, Y) -> U3_GG(X, Y, append1_in_aag(P, X1, Y)) 4.22/1.97 SUBLIST_IN_GG(X, Y) -> APPEND1_IN_AAG(P, X1, Y) 4.22/1.97 APPEND1_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> U1_AAG(X, Xs, Ys, Zs, append1_in_aag(Xs, Ys, Zs)) 4.22/1.97 APPEND1_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APPEND1_IN_AAG(Xs, Ys, Zs) 4.22/1.97 U3_GG(X, Y, append1_out_aag(P, X1, Y)) -> U4_GG(X, Y, append2_in_agg(X2, X, P)) 4.22/1.97 U3_GG(X, Y, append1_out_aag(P, X1, Y)) -> APPEND2_IN_AGG(X2, X, P) 4.22/1.97 APPEND2_IN_AGG(.(X, Xs), Ys, .(X, Zs)) -> U2_AGG(X, Xs, Ys, Zs, append2_in_agg(Xs, Ys, Zs)) 4.22/1.97 APPEND2_IN_AGG(.(X, Xs), Ys, .(X, Zs)) -> APPEND2_IN_AGG(Xs, Ys, Zs) 4.22/1.97 4.22/1.97 The TRS R consists of the following rules: 4.22/1.97 4.22/1.97 sublist_in_gg(X, Y) -> U3_gg(X, Y, append1_in_aag(P, X1, Y)) 4.22/1.97 append1_in_aag([], Ys, Ys) -> append1_out_aag([], Ys, Ys) 4.22/1.97 append1_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U1_aag(X, Xs, Ys, Zs, append1_in_aag(Xs, Ys, Zs)) 4.22/1.97 U1_aag(X, Xs, Ys, Zs, append1_out_aag(Xs, Ys, Zs)) -> append1_out_aag(.(X, Xs), Ys, .(X, Zs)) 4.22/1.97 U3_gg(X, Y, append1_out_aag(P, X1, Y)) -> U4_gg(X, Y, append2_in_agg(X2, X, P)) 4.22/1.97 append2_in_agg([], Ys, Ys) -> append2_out_agg([], Ys, Ys) 4.22/1.97 append2_in_agg(.(X, Xs), Ys, .(X, Zs)) -> U2_agg(X, Xs, Ys, Zs, append2_in_agg(Xs, Ys, Zs)) 4.22/1.97 U2_agg(X, Xs, Ys, Zs, append2_out_agg(Xs, Ys, Zs)) -> append2_out_agg(.(X, Xs), Ys, .(X, Zs)) 4.22/1.97 U4_gg(X, Y, append2_out_agg(X2, X, P)) -> sublist_out_gg(X, Y) 4.22/1.97 4.22/1.97 The argument filtering Pi contains the following mapping: 4.22/1.97 sublist_in_gg(x1, x2) = sublist_in_gg(x1, x2) 4.22/1.97 4.22/1.97 U3_gg(x1, x2, x3) = U3_gg(x1, x3) 4.22/1.97 4.22/1.97 append1_in_aag(x1, x2, x3) = append1_in_aag(x3) 4.22/1.97 4.22/1.97 append1_out_aag(x1, x2, x3) = append1_out_aag(x1, x2) 4.22/1.97 4.22/1.97 .(x1, x2) = .(x1, x2) 4.22/1.97 4.22/1.97 U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5) 4.22/1.97 4.22/1.97 U4_gg(x1, x2, x3) = U4_gg(x3) 4.22/1.97 4.22/1.97 append2_in_agg(x1, x2, x3) = append2_in_agg(x2, x3) 4.22/1.97 4.22/1.97 append2_out_agg(x1, x2, x3) = append2_out_agg(x1) 4.22/1.97 4.22/1.97 U2_agg(x1, x2, x3, x4, x5) = U2_agg(x1, x5) 4.22/1.97 4.22/1.97 sublist_out_gg(x1, x2) = sublist_out_gg 4.22/1.97 4.22/1.97 SUBLIST_IN_GG(x1, x2) = SUBLIST_IN_GG(x1, x2) 4.22/1.97 4.22/1.97 U3_GG(x1, x2, x3) = U3_GG(x1, x3) 4.22/1.97 4.22/1.97 APPEND1_IN_AAG(x1, x2, x3) = APPEND1_IN_AAG(x3) 4.22/1.97 4.22/1.97 U1_AAG(x1, x2, x3, x4, x5) = U1_AAG(x1, x5) 4.22/1.97 4.22/1.97 U4_GG(x1, x2, x3) = U4_GG(x3) 4.22/1.97 4.22/1.97 APPEND2_IN_AGG(x1, x2, x3) = APPEND2_IN_AGG(x2, x3) 4.22/1.97 4.22/1.97 U2_AGG(x1, x2, x3, x4, x5) = U2_AGG(x1, x5) 4.22/1.97 4.22/1.97 4.22/1.97 We have to consider all (P,R,Pi)-chains 4.22/1.97 ---------------------------------------- 4.22/1.97 4.22/1.97 (4) 4.22/1.97 Obligation: 4.22/1.97 Pi DP problem: 4.22/1.97 The TRS P consists of the following rules: 4.22/1.97 4.22/1.97 SUBLIST_IN_GG(X, Y) -> U3_GG(X, Y, append1_in_aag(P, X1, Y)) 4.22/1.97 SUBLIST_IN_GG(X, Y) -> APPEND1_IN_AAG(P, X1, Y) 4.22/1.97 APPEND1_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> U1_AAG(X, Xs, Ys, Zs, append1_in_aag(Xs, Ys, Zs)) 4.22/1.97 APPEND1_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APPEND1_IN_AAG(Xs, Ys, Zs) 4.22/1.97 U3_GG(X, Y, append1_out_aag(P, X1, Y)) -> U4_GG(X, Y, append2_in_agg(X2, X, P)) 4.22/1.97 U3_GG(X, Y, append1_out_aag(P, X1, Y)) -> APPEND2_IN_AGG(X2, X, P) 4.22/1.97 APPEND2_IN_AGG(.(X, Xs), Ys, .(X, Zs)) -> U2_AGG(X, Xs, Ys, Zs, append2_in_agg(Xs, Ys, Zs)) 4.22/1.97 APPEND2_IN_AGG(.(X, Xs), Ys, .(X, Zs)) -> APPEND2_IN_AGG(Xs, Ys, Zs) 4.22/1.97 4.22/1.97 The TRS R consists of the following rules: 4.22/1.97 4.22/1.97 sublist_in_gg(X, Y) -> U3_gg(X, Y, append1_in_aag(P, X1, Y)) 4.22/1.97 append1_in_aag([], Ys, Ys) -> append1_out_aag([], Ys, Ys) 4.22/1.97 append1_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U1_aag(X, Xs, Ys, Zs, append1_in_aag(Xs, Ys, Zs)) 4.22/1.97 U1_aag(X, Xs, Ys, Zs, append1_out_aag(Xs, Ys, Zs)) -> append1_out_aag(.(X, Xs), Ys, .(X, Zs)) 4.22/1.97 U3_gg(X, Y, append1_out_aag(P, X1, Y)) -> U4_gg(X, Y, append2_in_agg(X2, X, P)) 4.22/1.97 append2_in_agg([], Ys, Ys) -> append2_out_agg([], Ys, Ys) 4.22/1.97 append2_in_agg(.(X, Xs), Ys, .(X, Zs)) -> U2_agg(X, Xs, Ys, Zs, append2_in_agg(Xs, Ys, Zs)) 4.22/1.97 U2_agg(X, Xs, Ys, Zs, append2_out_agg(Xs, Ys, Zs)) -> append2_out_agg(.(X, Xs), Ys, .(X, Zs)) 4.22/1.97 U4_gg(X, Y, append2_out_agg(X2, X, P)) -> sublist_out_gg(X, Y) 4.22/1.97 4.22/1.97 The argument filtering Pi contains the following mapping: 4.22/1.97 sublist_in_gg(x1, x2) = sublist_in_gg(x1, x2) 4.22/1.97 4.22/1.97 U3_gg(x1, x2, x3) = U3_gg(x1, x3) 4.22/1.97 4.22/1.97 append1_in_aag(x1, x2, x3) = append1_in_aag(x3) 4.22/1.97 4.22/1.97 append1_out_aag(x1, x2, x3) = append1_out_aag(x1, x2) 4.22/1.97 4.22/1.97 .(x1, x2) = .(x1, x2) 4.22/1.97 4.22/1.97 U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5) 4.22/1.97 4.22/1.97 U4_gg(x1, x2, x3) = U4_gg(x3) 4.22/1.97 4.22/1.97 append2_in_agg(x1, x2, x3) = append2_in_agg(x2, x3) 4.22/1.97 4.22/1.97 append2_out_agg(x1, x2, x3) = append2_out_agg(x1) 4.22/1.97 4.22/1.97 U2_agg(x1, x2, x3, x4, x5) = U2_agg(x1, x5) 4.22/1.97 4.22/1.97 sublist_out_gg(x1, x2) = sublist_out_gg 4.22/1.97 4.22/1.97 SUBLIST_IN_GG(x1, x2) = SUBLIST_IN_GG(x1, x2) 4.22/1.97 4.22/1.97 U3_GG(x1, x2, x3) = U3_GG(x1, x3) 4.22/1.97 4.22/1.97 APPEND1_IN_AAG(x1, x2, x3) = APPEND1_IN_AAG(x3) 4.22/1.97 4.22/1.97 U1_AAG(x1, x2, x3, x4, x5) = U1_AAG(x1, x5) 4.22/1.97 4.22/1.97 U4_GG(x1, x2, x3) = U4_GG(x3) 4.22/1.97 4.22/1.97 APPEND2_IN_AGG(x1, x2, x3) = APPEND2_IN_AGG(x2, x3) 4.22/1.97 4.22/1.97 U2_AGG(x1, x2, x3, x4, x5) = U2_AGG(x1, x5) 4.22/1.97 4.22/1.97 4.22/1.97 We have to consider all (P,R,Pi)-chains 4.22/1.97 ---------------------------------------- 4.22/1.97 4.22/1.97 (5) DependencyGraphProof (EQUIVALENT) 4.22/1.97 The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes. 4.22/1.97 ---------------------------------------- 4.22/1.97 4.22/1.97 (6) 4.22/1.97 Complex Obligation (AND) 4.22/1.97 4.22/1.97 ---------------------------------------- 4.22/1.97 4.22/1.97 (7) 4.22/1.97 Obligation: 4.22/1.97 Pi DP problem: 4.22/1.97 The TRS P consists of the following rules: 4.22/1.97 4.22/1.97 APPEND2_IN_AGG(.(X, Xs), Ys, .(X, Zs)) -> APPEND2_IN_AGG(Xs, Ys, Zs) 4.22/1.97 4.22/1.97 The TRS R consists of the following rules: 4.22/1.97 4.22/1.97 sublist_in_gg(X, Y) -> U3_gg(X, Y, append1_in_aag(P, X1, Y)) 4.22/1.97 append1_in_aag([], Ys, Ys) -> append1_out_aag([], Ys, Ys) 4.22/1.97 append1_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U1_aag(X, Xs, Ys, Zs, append1_in_aag(Xs, Ys, Zs)) 4.22/1.97 U1_aag(X, Xs, Ys, Zs, append1_out_aag(Xs, Ys, Zs)) -> append1_out_aag(.(X, Xs), Ys, .(X, Zs)) 4.22/1.97 U3_gg(X, Y, append1_out_aag(P, X1, Y)) -> U4_gg(X, Y, append2_in_agg(X2, X, P)) 4.22/1.97 append2_in_agg([], Ys, Ys) -> append2_out_agg([], Ys, Ys) 4.22/1.97 append2_in_agg(.(X, Xs), Ys, .(X, Zs)) -> U2_agg(X, Xs, Ys, Zs, append2_in_agg(Xs, Ys, Zs)) 4.22/1.97 U2_agg(X, Xs, Ys, Zs, append2_out_agg(Xs, Ys, Zs)) -> append2_out_agg(.(X, Xs), Ys, .(X, Zs)) 4.22/1.97 U4_gg(X, Y, append2_out_agg(X2, X, P)) -> sublist_out_gg(X, Y) 4.22/1.97 4.22/1.97 The argument filtering Pi contains the following mapping: 4.22/1.97 sublist_in_gg(x1, x2) = sublist_in_gg(x1, x2) 4.22/1.97 4.22/1.97 U3_gg(x1, x2, x3) = U3_gg(x1, x3) 4.22/1.97 4.22/1.97 append1_in_aag(x1, x2, x3) = append1_in_aag(x3) 4.22/1.97 4.22/1.97 append1_out_aag(x1, x2, x3) = append1_out_aag(x1, x2) 4.22/1.97 4.22/1.97 .(x1, x2) = .(x1, x2) 4.22/1.97 4.22/1.97 U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5) 4.22/1.97 4.22/1.97 U4_gg(x1, x2, x3) = U4_gg(x3) 4.22/1.97 4.22/1.97 append2_in_agg(x1, x2, x3) = append2_in_agg(x2, x3) 4.22/1.97 4.22/1.97 append2_out_agg(x1, x2, x3) = append2_out_agg(x1) 4.22/1.97 4.22/1.97 U2_agg(x1, x2, x3, x4, x5) = U2_agg(x1, x5) 4.22/1.97 4.22/1.97 sublist_out_gg(x1, x2) = sublist_out_gg 4.22/1.97 4.22/1.97 APPEND2_IN_AGG(x1, x2, x3) = APPEND2_IN_AGG(x2, x3) 4.22/1.97 4.22/1.97 4.22/1.97 We have to consider all (P,R,Pi)-chains 4.22/1.97 ---------------------------------------- 4.22/1.97 4.22/1.97 (8) UsableRulesProof (EQUIVALENT) 4.22/1.97 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 4.22/1.97 ---------------------------------------- 4.22/1.97 4.22/1.97 (9) 4.22/1.97 Obligation: 4.22/1.97 Pi DP problem: 4.22/1.97 The TRS P consists of the following rules: 4.22/1.97 4.22/1.97 APPEND2_IN_AGG(.(X, Xs), Ys, .(X, Zs)) -> APPEND2_IN_AGG(Xs, Ys, Zs) 4.22/1.97 4.22/1.97 R is empty. 4.22/1.97 The argument filtering Pi contains the following mapping: 4.22/1.97 .(x1, x2) = .(x1, x2) 4.22/1.97 4.22/1.97 APPEND2_IN_AGG(x1, x2, x3) = APPEND2_IN_AGG(x2, x3) 4.22/1.97 4.22/1.97 4.22/1.97 We have to consider all (P,R,Pi)-chains 4.22/1.97 ---------------------------------------- 4.22/1.97 4.22/1.97 (10) PiDPToQDPProof (SOUND) 4.22/1.97 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 4.22/1.97 ---------------------------------------- 4.22/1.97 4.22/1.97 (11) 4.22/1.97 Obligation: 4.22/1.97 Q DP problem: 4.22/1.97 The TRS P consists of the following rules: 4.22/1.97 4.22/1.97 APPEND2_IN_AGG(Ys, .(X, Zs)) -> APPEND2_IN_AGG(Ys, Zs) 4.22/1.97 4.22/1.97 R is empty. 4.22/1.97 Q is empty. 4.22/1.97 We have to consider all (P,Q,R)-chains. 4.22/1.97 ---------------------------------------- 4.22/1.97 4.22/1.97 (12) QDPSizeChangeProof (EQUIVALENT) 4.22/1.97 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 4.22/1.98 4.22/1.98 From the DPs we obtained the following set of size-change graphs: 4.22/1.98 *APPEND2_IN_AGG(Ys, .(X, Zs)) -> APPEND2_IN_AGG(Ys, Zs) 4.22/1.98 The graph contains the following edges 1 >= 1, 2 > 2 4.22/1.98 4.22/1.98 4.22/1.98 ---------------------------------------- 4.22/1.98 4.22/1.98 (13) 4.22/1.98 YES 4.22/1.98 4.22/1.98 ---------------------------------------- 4.22/1.98 4.22/1.98 (14) 4.22/1.98 Obligation: 4.22/1.98 Pi DP problem: 4.22/1.98 The TRS P consists of the following rules: 4.22/1.98 4.22/1.98 APPEND1_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APPEND1_IN_AAG(Xs, Ys, Zs) 4.22/1.98 4.22/1.98 The TRS R consists of the following rules: 4.22/1.98 4.22/1.98 sublist_in_gg(X, Y) -> U3_gg(X, Y, append1_in_aag(P, X1, Y)) 4.22/1.98 append1_in_aag([], Ys, Ys) -> append1_out_aag([], Ys, Ys) 4.22/1.98 append1_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U1_aag(X, Xs, Ys, Zs, append1_in_aag(Xs, Ys, Zs)) 4.22/1.98 U1_aag(X, Xs, Ys, Zs, append1_out_aag(Xs, Ys, Zs)) -> append1_out_aag(.(X, Xs), Ys, .(X, Zs)) 4.22/1.98 U3_gg(X, Y, append1_out_aag(P, X1, Y)) -> U4_gg(X, Y, append2_in_agg(X2, X, P)) 4.22/1.98 append2_in_agg([], Ys, Ys) -> append2_out_agg([], Ys, Ys) 4.22/1.98 append2_in_agg(.(X, Xs), Ys, .(X, Zs)) -> U2_agg(X, Xs, Ys, Zs, append2_in_agg(Xs, Ys, Zs)) 4.22/1.98 U2_agg(X, Xs, Ys, Zs, append2_out_agg(Xs, Ys, Zs)) -> append2_out_agg(.(X, Xs), Ys, .(X, Zs)) 4.22/1.98 U4_gg(X, Y, append2_out_agg(X2, X, P)) -> sublist_out_gg(X, Y) 4.22/1.98 4.22/1.98 The argument filtering Pi contains the following mapping: 4.22/1.98 sublist_in_gg(x1, x2) = sublist_in_gg(x1, x2) 4.22/1.98 4.22/1.98 U3_gg(x1, x2, x3) = U3_gg(x1, x3) 4.22/1.98 4.22/1.98 append1_in_aag(x1, x2, x3) = append1_in_aag(x3) 4.22/1.98 4.22/1.98 append1_out_aag(x1, x2, x3) = append1_out_aag(x1, x2) 4.22/1.98 4.22/1.98 .(x1, x2) = .(x1, x2) 4.22/1.98 4.22/1.98 U1_aag(x1, x2, x3, x4, x5) = U1_aag(x1, x5) 4.22/1.98 4.22/1.98 U4_gg(x1, x2, x3) = U4_gg(x3) 4.22/1.98 4.22/1.98 append2_in_agg(x1, x2, x3) = append2_in_agg(x2, x3) 4.22/1.98 4.22/1.98 append2_out_agg(x1, x2, x3) = append2_out_agg(x1) 4.22/1.98 4.22/1.98 U2_agg(x1, x2, x3, x4, x5) = U2_agg(x1, x5) 4.22/1.98 4.22/1.98 sublist_out_gg(x1, x2) = sublist_out_gg 4.22/1.98 4.22/1.98 APPEND1_IN_AAG(x1, x2, x3) = APPEND1_IN_AAG(x3) 4.22/1.98 4.22/1.98 4.22/1.98 We have to consider all (P,R,Pi)-chains 4.22/1.98 ---------------------------------------- 4.22/1.98 4.22/1.98 (15) UsableRulesProof (EQUIVALENT) 4.22/1.98 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 4.22/1.98 ---------------------------------------- 4.22/1.98 4.22/1.98 (16) 4.22/1.98 Obligation: 4.22/1.98 Pi DP problem: 4.22/1.98 The TRS P consists of the following rules: 4.22/1.98 4.22/1.98 APPEND1_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APPEND1_IN_AAG(Xs, Ys, Zs) 4.22/1.98 4.22/1.98 R is empty. 4.22/1.98 The argument filtering Pi contains the following mapping: 4.22/1.98 .(x1, x2) = .(x1, x2) 4.22/1.98 4.22/1.98 APPEND1_IN_AAG(x1, x2, x3) = APPEND1_IN_AAG(x3) 4.22/1.98 4.22/1.98 4.22/1.98 We have to consider all (P,R,Pi)-chains 4.22/1.98 ---------------------------------------- 4.22/1.98 4.22/1.98 (17) PiDPToQDPProof (SOUND) 4.22/1.98 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 4.22/1.98 ---------------------------------------- 4.22/1.98 4.22/1.98 (18) 4.22/1.98 Obligation: 4.22/1.98 Q DP problem: 4.22/1.98 The TRS P consists of the following rules: 4.22/1.98 4.22/1.98 APPEND1_IN_AAG(.(X, Zs)) -> APPEND1_IN_AAG(Zs) 4.22/1.98 4.22/1.98 R is empty. 4.22/1.98 Q is empty. 4.22/1.98 We have to consider all (P,Q,R)-chains. 4.22/1.98 ---------------------------------------- 4.22/1.98 4.22/1.98 (19) QDPSizeChangeProof (EQUIVALENT) 4.22/1.98 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 4.22/1.98 4.22/1.98 From the DPs we obtained the following set of size-change graphs: 4.22/1.98 *APPEND1_IN_AAG(.(X, Zs)) -> APPEND1_IN_AAG(Zs) 4.22/1.98 The graph contains the following edges 1 > 1 4.22/1.98 4.22/1.98 4.22/1.98 ---------------------------------------- 4.22/1.98 4.22/1.98 (20) 4.22/1.98 YES 4.44/2.07 EOF