3.63/1.72 YES 3.63/1.73 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 3.63/1.73 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.63/1.73 3.63/1.73 3.63/1.73 Left Termination of the query pattern 3.63/1.73 3.63/1.73 ack(g,g,a) 3.63/1.73 3.63/1.73 w.r.t. the given Prolog program could successfully be proven: 3.63/1.73 3.63/1.73 (0) Prolog 3.63/1.73 (1) PrologToPiTRSProof [SOUND, 0 ms] 3.63/1.73 (2) PiTRS 3.63/1.73 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 3.63/1.73 (4) PiDP 3.63/1.73 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 3.63/1.73 (6) PiDP 3.63/1.73 (7) PiDPToQDPProof [SOUND, 2 ms] 3.63/1.73 (8) QDP 3.63/1.73 (9) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.63/1.73 (10) YES 3.63/1.73 3.63/1.73 3.63/1.73 ---------------------------------------- 3.63/1.73 3.63/1.73 (0) 3.63/1.73 Obligation: 3.63/1.73 Clauses: 3.63/1.73 3.63/1.73 ack(0, N, s(N)). 3.63/1.73 ack(s(M), 0, A) :- ack(M, s(0), A). 3.63/1.73 ack(s(M), s(N), A) :- ','(ack(s(M), N, A1), ack(M, A1, A)). 3.63/1.73 3.63/1.73 3.63/1.73 Query: ack(g,g,a) 3.63/1.73 ---------------------------------------- 3.63/1.73 3.63/1.73 (1) PrologToPiTRSProof (SOUND) 3.63/1.73 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 3.63/1.73 3.63/1.73 ack_in_3: (b,b,f) 3.63/1.73 3.63/1.73 Transforming Prolog into the following Term Rewriting System: 3.63/1.73 3.63/1.73 Pi-finite rewrite system: 3.63/1.73 The TRS R consists of the following rules: 3.63/1.73 3.63/1.73 ack_in_gga(0, N, s(N)) -> ack_out_gga(0, N, s(N)) 3.63/1.73 ack_in_gga(s(M), 0, A) -> U1_gga(M, A, ack_in_gga(M, s(0), A)) 3.63/1.73 ack_in_gga(s(M), s(N), A) -> U2_gga(M, N, A, ack_in_gga(s(M), N, A1)) 3.63/1.73 U2_gga(M, N, A, ack_out_gga(s(M), N, A1)) -> U3_gga(M, N, A, ack_in_gga(M, A1, A)) 3.63/1.73 U3_gga(M, N, A, ack_out_gga(M, A1, A)) -> ack_out_gga(s(M), s(N), A) 3.63/1.73 U1_gga(M, A, ack_out_gga(M, s(0), A)) -> ack_out_gga(s(M), 0, A) 3.63/1.73 3.63/1.73 The argument filtering Pi contains the following mapping: 3.63/1.73 ack_in_gga(x1, x2, x3) = ack_in_gga(x1, x2) 3.63/1.73 3.63/1.73 0 = 0 3.63/1.73 3.63/1.73 ack_out_gga(x1, x2, x3) = ack_out_gga(x1, x2, x3) 3.63/1.73 3.63/1.73 s(x1) = s(x1) 3.63/1.73 3.63/1.73 U1_gga(x1, x2, x3) = U1_gga(x1, x3) 3.63/1.73 3.63/1.73 U2_gga(x1, x2, x3, x4) = U2_gga(x1, x2, x4) 3.63/1.73 3.63/1.73 U3_gga(x1, x2, x3, x4) = U3_gga(x1, x2, x4) 3.63/1.73 3.63/1.73 3.63/1.73 3.63/1.73 3.63/1.73 3.63/1.73 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 3.63/1.73 3.63/1.73 3.63/1.73 3.63/1.73 ---------------------------------------- 3.63/1.73 3.63/1.73 (2) 3.63/1.73 Obligation: 3.63/1.73 Pi-finite rewrite system: 3.63/1.73 The TRS R consists of the following rules: 3.63/1.73 3.63/1.73 ack_in_gga(0, N, s(N)) -> ack_out_gga(0, N, s(N)) 3.63/1.73 ack_in_gga(s(M), 0, A) -> U1_gga(M, A, ack_in_gga(M, s(0), A)) 3.63/1.73 ack_in_gga(s(M), s(N), A) -> U2_gga(M, N, A, ack_in_gga(s(M), N, A1)) 3.63/1.73 U2_gga(M, N, A, ack_out_gga(s(M), N, A1)) -> U3_gga(M, N, A, ack_in_gga(M, A1, A)) 3.63/1.73 U3_gga(M, N, A, ack_out_gga(M, A1, A)) -> ack_out_gga(s(M), s(N), A) 3.63/1.73 U1_gga(M, A, ack_out_gga(M, s(0), A)) -> ack_out_gga(s(M), 0, A) 3.63/1.73 3.63/1.73 The argument filtering Pi contains the following mapping: 3.63/1.73 ack_in_gga(x1, x2, x3) = ack_in_gga(x1, x2) 3.63/1.73 3.63/1.73 0 = 0 3.63/1.73 3.63/1.73 ack_out_gga(x1, x2, x3) = ack_out_gga(x1, x2, x3) 3.63/1.73 3.63/1.73 s(x1) = s(x1) 3.63/1.73 3.63/1.73 U1_gga(x1, x2, x3) = U1_gga(x1, x3) 3.63/1.73 3.63/1.73 U2_gga(x1, x2, x3, x4) = U2_gga(x1, x2, x4) 3.63/1.73 3.63/1.73 U3_gga(x1, x2, x3, x4) = U3_gga(x1, x2, x4) 3.63/1.73 3.63/1.73 3.63/1.73 3.63/1.73 ---------------------------------------- 3.63/1.73 3.63/1.73 (3) DependencyPairsProof (EQUIVALENT) 3.63/1.73 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 3.63/1.73 Pi DP problem: 3.63/1.73 The TRS P consists of the following rules: 3.63/1.73 3.63/1.73 ACK_IN_GGA(s(M), 0, A) -> U1_GGA(M, A, ack_in_gga(M, s(0), A)) 3.63/1.73 ACK_IN_GGA(s(M), 0, A) -> ACK_IN_GGA(M, s(0), A) 3.63/1.73 ACK_IN_GGA(s(M), s(N), A) -> U2_GGA(M, N, A, ack_in_gga(s(M), N, A1)) 3.63/1.73 ACK_IN_GGA(s(M), s(N), A) -> ACK_IN_GGA(s(M), N, A1) 3.63/1.73 U2_GGA(M, N, A, ack_out_gga(s(M), N, A1)) -> U3_GGA(M, N, A, ack_in_gga(M, A1, A)) 3.63/1.73 U2_GGA(M, N, A, ack_out_gga(s(M), N, A1)) -> ACK_IN_GGA(M, A1, A) 3.63/1.73 3.63/1.73 The TRS R consists of the following rules: 3.63/1.73 3.63/1.73 ack_in_gga(0, N, s(N)) -> ack_out_gga(0, N, s(N)) 3.63/1.73 ack_in_gga(s(M), 0, A) -> U1_gga(M, A, ack_in_gga(M, s(0), A)) 3.63/1.73 ack_in_gga(s(M), s(N), A) -> U2_gga(M, N, A, ack_in_gga(s(M), N, A1)) 3.63/1.73 U2_gga(M, N, A, ack_out_gga(s(M), N, A1)) -> U3_gga(M, N, A, ack_in_gga(M, A1, A)) 3.63/1.73 U3_gga(M, N, A, ack_out_gga(M, A1, A)) -> ack_out_gga(s(M), s(N), A) 3.63/1.73 U1_gga(M, A, ack_out_gga(M, s(0), A)) -> ack_out_gga(s(M), 0, A) 3.63/1.73 3.63/1.73 The argument filtering Pi contains the following mapping: 3.63/1.73 ack_in_gga(x1, x2, x3) = ack_in_gga(x1, x2) 3.63/1.73 3.63/1.73 0 = 0 3.63/1.73 3.63/1.73 ack_out_gga(x1, x2, x3) = ack_out_gga(x1, x2, x3) 3.63/1.73 3.63/1.73 s(x1) = s(x1) 3.63/1.73 3.63/1.73 U1_gga(x1, x2, x3) = U1_gga(x1, x3) 3.63/1.73 3.63/1.73 U2_gga(x1, x2, x3, x4) = U2_gga(x1, x2, x4) 3.63/1.73 3.63/1.73 U3_gga(x1, x2, x3, x4) = U3_gga(x1, x2, x4) 3.63/1.73 3.63/1.73 ACK_IN_GGA(x1, x2, x3) = ACK_IN_GGA(x1, x2) 3.63/1.73 3.63/1.73 U1_GGA(x1, x2, x3) = U1_GGA(x1, x3) 3.63/1.73 3.63/1.73 U2_GGA(x1, x2, x3, x4) = U2_GGA(x1, x2, x4) 3.63/1.73 3.63/1.73 U3_GGA(x1, x2, x3, x4) = U3_GGA(x1, x2, x4) 3.63/1.73 3.63/1.73 3.63/1.73 We have to consider all (P,R,Pi)-chains 3.63/1.73 ---------------------------------------- 3.63/1.73 3.63/1.73 (4) 3.63/1.73 Obligation: 3.63/1.73 Pi DP problem: 3.63/1.73 The TRS P consists of the following rules: 3.63/1.73 3.63/1.73 ACK_IN_GGA(s(M), 0, A) -> U1_GGA(M, A, ack_in_gga(M, s(0), A)) 3.63/1.73 ACK_IN_GGA(s(M), 0, A) -> ACK_IN_GGA(M, s(0), A) 3.63/1.73 ACK_IN_GGA(s(M), s(N), A) -> U2_GGA(M, N, A, ack_in_gga(s(M), N, A1)) 3.63/1.73 ACK_IN_GGA(s(M), s(N), A) -> ACK_IN_GGA(s(M), N, A1) 3.63/1.73 U2_GGA(M, N, A, ack_out_gga(s(M), N, A1)) -> U3_GGA(M, N, A, ack_in_gga(M, A1, A)) 3.63/1.73 U2_GGA(M, N, A, ack_out_gga(s(M), N, A1)) -> ACK_IN_GGA(M, A1, A) 3.63/1.73 3.63/1.73 The TRS R consists of the following rules: 3.63/1.73 3.63/1.73 ack_in_gga(0, N, s(N)) -> ack_out_gga(0, N, s(N)) 3.63/1.73 ack_in_gga(s(M), 0, A) -> U1_gga(M, A, ack_in_gga(M, s(0), A)) 3.63/1.73 ack_in_gga(s(M), s(N), A) -> U2_gga(M, N, A, ack_in_gga(s(M), N, A1)) 3.63/1.73 U2_gga(M, N, A, ack_out_gga(s(M), N, A1)) -> U3_gga(M, N, A, ack_in_gga(M, A1, A)) 3.63/1.73 U3_gga(M, N, A, ack_out_gga(M, A1, A)) -> ack_out_gga(s(M), s(N), A) 3.63/1.73 U1_gga(M, A, ack_out_gga(M, s(0), A)) -> ack_out_gga(s(M), 0, A) 3.63/1.73 3.63/1.73 The argument filtering Pi contains the following mapping: 3.63/1.73 ack_in_gga(x1, x2, x3) = ack_in_gga(x1, x2) 3.63/1.73 3.63/1.73 0 = 0 3.63/1.73 3.63/1.73 ack_out_gga(x1, x2, x3) = ack_out_gga(x1, x2, x3) 3.63/1.73 3.63/1.73 s(x1) = s(x1) 3.63/1.73 3.63/1.73 U1_gga(x1, x2, x3) = U1_gga(x1, x3) 3.63/1.73 3.63/1.73 U2_gga(x1, x2, x3, x4) = U2_gga(x1, x2, x4) 3.63/1.73 3.63/1.73 U3_gga(x1, x2, x3, x4) = U3_gga(x1, x2, x4) 3.63/1.73 3.63/1.73 ACK_IN_GGA(x1, x2, x3) = ACK_IN_GGA(x1, x2) 3.63/1.73 3.63/1.73 U1_GGA(x1, x2, x3) = U1_GGA(x1, x3) 3.63/1.73 3.63/1.73 U2_GGA(x1, x2, x3, x4) = U2_GGA(x1, x2, x4) 3.63/1.73 3.63/1.73 U3_GGA(x1, x2, x3, x4) = U3_GGA(x1, x2, x4) 3.63/1.73 3.63/1.73 3.63/1.73 We have to consider all (P,R,Pi)-chains 3.63/1.73 ---------------------------------------- 3.63/1.73 3.63/1.73 (5) DependencyGraphProof (EQUIVALENT) 3.63/1.73 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes. 3.63/1.73 ---------------------------------------- 3.63/1.73 3.63/1.73 (6) 3.63/1.73 Obligation: 3.63/1.73 Pi DP problem: 3.63/1.73 The TRS P consists of the following rules: 3.63/1.73 3.63/1.73 ACK_IN_GGA(s(M), 0, A) -> ACK_IN_GGA(M, s(0), A) 3.63/1.73 ACK_IN_GGA(s(M), s(N), A) -> U2_GGA(M, N, A, ack_in_gga(s(M), N, A1)) 3.63/1.73 U2_GGA(M, N, A, ack_out_gga(s(M), N, A1)) -> ACK_IN_GGA(M, A1, A) 3.63/1.73 ACK_IN_GGA(s(M), s(N), A) -> ACK_IN_GGA(s(M), N, A1) 3.63/1.73 3.63/1.73 The TRS R consists of the following rules: 3.63/1.73 3.63/1.73 ack_in_gga(0, N, s(N)) -> ack_out_gga(0, N, s(N)) 3.63/1.73 ack_in_gga(s(M), 0, A) -> U1_gga(M, A, ack_in_gga(M, s(0), A)) 3.63/1.73 ack_in_gga(s(M), s(N), A) -> U2_gga(M, N, A, ack_in_gga(s(M), N, A1)) 3.63/1.73 U2_gga(M, N, A, ack_out_gga(s(M), N, A1)) -> U3_gga(M, N, A, ack_in_gga(M, A1, A)) 3.63/1.73 U3_gga(M, N, A, ack_out_gga(M, A1, A)) -> ack_out_gga(s(M), s(N), A) 3.63/1.73 U1_gga(M, A, ack_out_gga(M, s(0), A)) -> ack_out_gga(s(M), 0, A) 3.63/1.73 3.63/1.73 The argument filtering Pi contains the following mapping: 3.63/1.73 ack_in_gga(x1, x2, x3) = ack_in_gga(x1, x2) 3.63/1.73 3.63/1.73 0 = 0 3.63/1.73 3.63/1.73 ack_out_gga(x1, x2, x3) = ack_out_gga(x1, x2, x3) 3.63/1.73 3.63/1.73 s(x1) = s(x1) 3.63/1.73 3.63/1.73 U1_gga(x1, x2, x3) = U1_gga(x1, x3) 3.63/1.73 3.63/1.73 U2_gga(x1, x2, x3, x4) = U2_gga(x1, x2, x4) 3.63/1.73 3.63/1.73 U3_gga(x1, x2, x3, x4) = U3_gga(x1, x2, x4) 3.63/1.73 3.63/1.73 ACK_IN_GGA(x1, x2, x3) = ACK_IN_GGA(x1, x2) 3.63/1.73 3.63/1.73 U2_GGA(x1, x2, x3, x4) = U2_GGA(x1, x2, x4) 3.63/1.73 3.63/1.73 3.63/1.73 We have to consider all (P,R,Pi)-chains 3.63/1.73 ---------------------------------------- 3.63/1.73 3.63/1.73 (7) PiDPToQDPProof (SOUND) 3.63/1.73 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.63/1.73 ---------------------------------------- 3.63/1.73 3.63/1.73 (8) 3.63/1.73 Obligation: 3.63/1.73 Q DP problem: 3.63/1.73 The TRS P consists of the following rules: 3.63/1.73 3.63/1.73 ACK_IN_GGA(s(M), 0) -> ACK_IN_GGA(M, s(0)) 3.63/1.73 ACK_IN_GGA(s(M), s(N)) -> U2_GGA(M, N, ack_in_gga(s(M), N)) 3.63/1.73 U2_GGA(M, N, ack_out_gga(s(M), N, A1)) -> ACK_IN_GGA(M, A1) 3.63/1.73 ACK_IN_GGA(s(M), s(N)) -> ACK_IN_GGA(s(M), N) 3.63/1.73 3.63/1.73 The TRS R consists of the following rules: 3.63/1.73 3.63/1.73 ack_in_gga(0, N) -> ack_out_gga(0, N, s(N)) 3.63/1.73 ack_in_gga(s(M), 0) -> U1_gga(M, ack_in_gga(M, s(0))) 3.63/1.73 ack_in_gga(s(M), s(N)) -> U2_gga(M, N, ack_in_gga(s(M), N)) 3.63/1.73 U2_gga(M, N, ack_out_gga(s(M), N, A1)) -> U3_gga(M, N, ack_in_gga(M, A1)) 3.63/1.73 U3_gga(M, N, ack_out_gga(M, A1, A)) -> ack_out_gga(s(M), s(N), A) 3.63/1.73 U1_gga(M, ack_out_gga(M, s(0), A)) -> ack_out_gga(s(M), 0, A) 3.63/1.73 3.63/1.73 The set Q consists of the following terms: 3.63/1.73 3.63/1.73 ack_in_gga(x0, x1) 3.63/1.73 U2_gga(x0, x1, x2) 3.63/1.73 U3_gga(x0, x1, x2) 3.63/1.73 U1_gga(x0, x1) 3.63/1.73 3.63/1.73 We have to consider all (P,Q,R)-chains. 3.63/1.73 ---------------------------------------- 3.63/1.73 3.63/1.73 (9) QDPSizeChangeProof (EQUIVALENT) 3.63/1.73 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.63/1.73 3.63/1.73 From the DPs we obtained the following set of size-change graphs: 3.63/1.73 *ACK_IN_GGA(s(M), s(N)) -> ACK_IN_GGA(s(M), N) 3.63/1.73 The graph contains the following edges 1 >= 1, 2 > 2 3.63/1.73 3.63/1.73 3.63/1.73 *ACK_IN_GGA(s(M), s(N)) -> U2_GGA(M, N, ack_in_gga(s(M), N)) 3.63/1.73 The graph contains the following edges 1 > 1, 2 > 2 3.63/1.73 3.63/1.73 3.63/1.73 *U2_GGA(M, N, ack_out_gga(s(M), N, A1)) -> ACK_IN_GGA(M, A1) 3.63/1.73 The graph contains the following edges 1 >= 1, 3 > 1, 3 > 2 3.63/1.73 3.63/1.73 3.63/1.73 *ACK_IN_GGA(s(M), 0) -> ACK_IN_GGA(M, s(0)) 3.63/1.73 The graph contains the following edges 1 > 1 3.63/1.73 3.63/1.73 3.63/1.73 ---------------------------------------- 3.63/1.73 3.63/1.73 (10) 3.63/1.73 YES 3.63/1.76 EOF