3.83/1.75 YES 3.83/1.75 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 3.83/1.75 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.83/1.75 3.83/1.75 3.83/1.75 Left Termination of the query pattern 3.83/1.75 3.83/1.75 f(g,g,a) 3.83/1.75 3.83/1.75 w.r.t. the given Prolog program could successfully be proven: 3.83/1.75 3.83/1.75 (0) Prolog 3.83/1.75 (1) PrologToPiTRSProof [SOUND, 0 ms] 3.83/1.75 (2) PiTRS 3.83/1.75 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 3.83/1.75 (4) PiDP 3.83/1.75 (5) DependencyGraphProof [EQUIVALENT, 2 ms] 3.83/1.75 (6) PiDP 3.83/1.75 (7) UsableRulesProof [EQUIVALENT, 0 ms] 3.83/1.75 (8) PiDP 3.83/1.75 (9) PiDPToQDPProof [SOUND, 0 ms] 3.83/1.75 (10) QDP 3.83/1.75 (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.83/1.75 (12) YES 3.83/1.75 3.83/1.75 3.83/1.75 ---------------------------------------- 3.83/1.75 3.83/1.75 (0) 3.83/1.75 Obligation: 3.83/1.75 Clauses: 3.83/1.75 3.83/1.75 f(RES, [], RES). 3.83/1.75 f([], .(Head, Tail), RES) :- f(.(Head, Tail), Tail, RES). 3.83/1.75 f(.(Head, Tail), Y, RES) :- f(Y, Tail, RES). 3.83/1.75 3.83/1.75 3.83/1.75 Query: f(g,g,a) 3.83/1.75 ---------------------------------------- 3.83/1.75 3.83/1.75 (1) PrologToPiTRSProof (SOUND) 3.83/1.75 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 3.83/1.75 3.83/1.75 f_in_3: (b,b,f) 3.83/1.75 3.83/1.75 Transforming Prolog into the following Term Rewriting System: 3.83/1.76 3.83/1.76 Pi-finite rewrite system: 3.83/1.76 The TRS R consists of the following rules: 3.83/1.76 3.83/1.76 f_in_gga(RES, [], RES) -> f_out_gga(RES, [], RES) 3.83/1.76 f_in_gga([], .(Head, Tail), RES) -> U1_gga(Head, Tail, RES, f_in_gga(.(Head, Tail), Tail, RES)) 3.83/1.76 f_in_gga(.(Head, Tail), Y, RES) -> U2_gga(Head, Tail, Y, RES, f_in_gga(Y, Tail, RES)) 3.83/1.76 U2_gga(Head, Tail, Y, RES, f_out_gga(Y, Tail, RES)) -> f_out_gga(.(Head, Tail), Y, RES) 3.83/1.76 U1_gga(Head, Tail, RES, f_out_gga(.(Head, Tail), Tail, RES)) -> f_out_gga([], .(Head, Tail), RES) 3.83/1.76 3.83/1.76 The argument filtering Pi contains the following mapping: 3.83/1.76 f_in_gga(x1, x2, x3) = f_in_gga(x1, x2) 3.83/1.76 3.83/1.76 [] = [] 3.83/1.76 3.83/1.76 f_out_gga(x1, x2, x3) = f_out_gga(x3) 3.83/1.76 3.83/1.76 .(x1, x2) = .(x1, x2) 3.83/1.76 3.83/1.76 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 3.83/1.76 3.83/1.76 U2_gga(x1, x2, x3, x4, x5) = U2_gga(x5) 3.83/1.76 3.83/1.76 3.83/1.76 3.83/1.76 3.83/1.76 3.83/1.76 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 3.83/1.76 3.83/1.76 3.83/1.76 3.83/1.76 ---------------------------------------- 3.83/1.76 3.83/1.76 (2) 3.83/1.76 Obligation: 3.83/1.76 Pi-finite rewrite system: 3.83/1.76 The TRS R consists of the following rules: 3.83/1.76 3.83/1.76 f_in_gga(RES, [], RES) -> f_out_gga(RES, [], RES) 3.83/1.76 f_in_gga([], .(Head, Tail), RES) -> U1_gga(Head, Tail, RES, f_in_gga(.(Head, Tail), Tail, RES)) 3.83/1.76 f_in_gga(.(Head, Tail), Y, RES) -> U2_gga(Head, Tail, Y, RES, f_in_gga(Y, Tail, RES)) 3.83/1.76 U2_gga(Head, Tail, Y, RES, f_out_gga(Y, Tail, RES)) -> f_out_gga(.(Head, Tail), Y, RES) 3.83/1.76 U1_gga(Head, Tail, RES, f_out_gga(.(Head, Tail), Tail, RES)) -> f_out_gga([], .(Head, Tail), RES) 3.83/1.76 3.83/1.76 The argument filtering Pi contains the following mapping: 3.83/1.76 f_in_gga(x1, x2, x3) = f_in_gga(x1, x2) 3.83/1.76 3.83/1.76 [] = [] 3.83/1.76 3.83/1.76 f_out_gga(x1, x2, x3) = f_out_gga(x3) 3.83/1.76 3.83/1.76 .(x1, x2) = .(x1, x2) 3.83/1.76 3.83/1.76 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 3.83/1.76 3.83/1.76 U2_gga(x1, x2, x3, x4, x5) = U2_gga(x5) 3.83/1.76 3.83/1.76 3.83/1.76 3.83/1.76 ---------------------------------------- 3.83/1.76 3.83/1.76 (3) DependencyPairsProof (EQUIVALENT) 3.83/1.76 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 3.83/1.76 Pi DP problem: 3.83/1.76 The TRS P consists of the following rules: 3.83/1.76 3.83/1.76 F_IN_GGA([], .(Head, Tail), RES) -> U1_GGA(Head, Tail, RES, f_in_gga(.(Head, Tail), Tail, RES)) 3.83/1.76 F_IN_GGA([], .(Head, Tail), RES) -> F_IN_GGA(.(Head, Tail), Tail, RES) 3.83/1.76 F_IN_GGA(.(Head, Tail), Y, RES) -> U2_GGA(Head, Tail, Y, RES, f_in_gga(Y, Tail, RES)) 3.83/1.76 F_IN_GGA(.(Head, Tail), Y, RES) -> F_IN_GGA(Y, Tail, RES) 3.83/1.76 3.83/1.76 The TRS R consists of the following rules: 3.83/1.76 3.83/1.76 f_in_gga(RES, [], RES) -> f_out_gga(RES, [], RES) 3.83/1.76 f_in_gga([], .(Head, Tail), RES) -> U1_gga(Head, Tail, RES, f_in_gga(.(Head, Tail), Tail, RES)) 3.83/1.76 f_in_gga(.(Head, Tail), Y, RES) -> U2_gga(Head, Tail, Y, RES, f_in_gga(Y, Tail, RES)) 3.83/1.76 U2_gga(Head, Tail, Y, RES, f_out_gga(Y, Tail, RES)) -> f_out_gga(.(Head, Tail), Y, RES) 3.83/1.76 U1_gga(Head, Tail, RES, f_out_gga(.(Head, Tail), Tail, RES)) -> f_out_gga([], .(Head, Tail), RES) 3.83/1.76 3.83/1.76 The argument filtering Pi contains the following mapping: 3.83/1.76 f_in_gga(x1, x2, x3) = f_in_gga(x1, x2) 3.83/1.76 3.83/1.76 [] = [] 3.83/1.76 3.83/1.76 f_out_gga(x1, x2, x3) = f_out_gga(x3) 3.83/1.76 3.83/1.76 .(x1, x2) = .(x1, x2) 3.83/1.76 3.83/1.76 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 3.83/1.76 3.83/1.76 U2_gga(x1, x2, x3, x4, x5) = U2_gga(x5) 3.83/1.76 3.83/1.76 F_IN_GGA(x1, x2, x3) = F_IN_GGA(x1, x2) 3.83/1.76 3.83/1.76 U1_GGA(x1, x2, x3, x4) = U1_GGA(x4) 3.83/1.76 3.83/1.76 U2_GGA(x1, x2, x3, x4, x5) = U2_GGA(x5) 3.83/1.76 3.83/1.76 3.83/1.76 We have to consider all (P,R,Pi)-chains 3.83/1.76 ---------------------------------------- 3.83/1.76 3.83/1.76 (4) 3.83/1.76 Obligation: 3.83/1.76 Pi DP problem: 3.83/1.76 The TRS P consists of the following rules: 3.83/1.76 3.83/1.76 F_IN_GGA([], .(Head, Tail), RES) -> U1_GGA(Head, Tail, RES, f_in_gga(.(Head, Tail), Tail, RES)) 3.83/1.76 F_IN_GGA([], .(Head, Tail), RES) -> F_IN_GGA(.(Head, Tail), Tail, RES) 3.83/1.76 F_IN_GGA(.(Head, Tail), Y, RES) -> U2_GGA(Head, Tail, Y, RES, f_in_gga(Y, Tail, RES)) 3.83/1.76 F_IN_GGA(.(Head, Tail), Y, RES) -> F_IN_GGA(Y, Tail, RES) 3.83/1.76 3.83/1.76 The TRS R consists of the following rules: 3.83/1.76 3.83/1.76 f_in_gga(RES, [], RES) -> f_out_gga(RES, [], RES) 3.83/1.76 f_in_gga([], .(Head, Tail), RES) -> U1_gga(Head, Tail, RES, f_in_gga(.(Head, Tail), Tail, RES)) 3.83/1.76 f_in_gga(.(Head, Tail), Y, RES) -> U2_gga(Head, Tail, Y, RES, f_in_gga(Y, Tail, RES)) 3.83/1.76 U2_gga(Head, Tail, Y, RES, f_out_gga(Y, Tail, RES)) -> f_out_gga(.(Head, Tail), Y, RES) 3.83/1.76 U1_gga(Head, Tail, RES, f_out_gga(.(Head, Tail), Tail, RES)) -> f_out_gga([], .(Head, Tail), RES) 3.83/1.76 3.83/1.76 The argument filtering Pi contains the following mapping: 3.83/1.76 f_in_gga(x1, x2, x3) = f_in_gga(x1, x2) 3.83/1.76 3.83/1.76 [] = [] 3.83/1.76 3.83/1.76 f_out_gga(x1, x2, x3) = f_out_gga(x3) 3.83/1.76 3.83/1.76 .(x1, x2) = .(x1, x2) 3.83/1.76 3.83/1.76 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 3.83/1.76 3.83/1.76 U2_gga(x1, x2, x3, x4, x5) = U2_gga(x5) 3.83/1.76 3.83/1.76 F_IN_GGA(x1, x2, x3) = F_IN_GGA(x1, x2) 3.83/1.76 3.83/1.76 U1_GGA(x1, x2, x3, x4) = U1_GGA(x4) 3.83/1.76 3.83/1.76 U2_GGA(x1, x2, x3, x4, x5) = U2_GGA(x5) 3.83/1.76 3.83/1.76 3.83/1.76 We have to consider all (P,R,Pi)-chains 3.83/1.76 ---------------------------------------- 3.83/1.76 3.83/1.76 (5) DependencyGraphProof (EQUIVALENT) 3.83/1.76 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes. 3.83/1.76 ---------------------------------------- 3.83/1.76 3.83/1.76 (6) 3.83/1.76 Obligation: 3.83/1.76 Pi DP problem: 3.83/1.76 The TRS P consists of the following rules: 3.83/1.76 3.83/1.76 F_IN_GGA([], .(Head, Tail), RES) -> F_IN_GGA(.(Head, Tail), Tail, RES) 3.83/1.76 F_IN_GGA(.(Head, Tail), Y, RES) -> F_IN_GGA(Y, Tail, RES) 3.83/1.76 3.83/1.76 The TRS R consists of the following rules: 3.83/1.76 3.83/1.76 f_in_gga(RES, [], RES) -> f_out_gga(RES, [], RES) 3.83/1.76 f_in_gga([], .(Head, Tail), RES) -> U1_gga(Head, Tail, RES, f_in_gga(.(Head, Tail), Tail, RES)) 3.83/1.76 f_in_gga(.(Head, Tail), Y, RES) -> U2_gga(Head, Tail, Y, RES, f_in_gga(Y, Tail, RES)) 3.83/1.76 U2_gga(Head, Tail, Y, RES, f_out_gga(Y, Tail, RES)) -> f_out_gga(.(Head, Tail), Y, RES) 3.83/1.76 U1_gga(Head, Tail, RES, f_out_gga(.(Head, Tail), Tail, RES)) -> f_out_gga([], .(Head, Tail), RES) 3.83/1.76 3.83/1.76 The argument filtering Pi contains the following mapping: 3.83/1.76 f_in_gga(x1, x2, x3) = f_in_gga(x1, x2) 3.83/1.76 3.83/1.76 [] = [] 3.83/1.76 3.83/1.76 f_out_gga(x1, x2, x3) = f_out_gga(x3) 3.83/1.76 3.83/1.76 .(x1, x2) = .(x1, x2) 3.83/1.76 3.83/1.76 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 3.83/1.76 3.83/1.76 U2_gga(x1, x2, x3, x4, x5) = U2_gga(x5) 3.83/1.76 3.83/1.76 F_IN_GGA(x1, x2, x3) = F_IN_GGA(x1, x2) 3.83/1.76 3.83/1.76 3.83/1.76 We have to consider all (P,R,Pi)-chains 3.83/1.76 ---------------------------------------- 3.83/1.76 3.83/1.76 (7) UsableRulesProof (EQUIVALENT) 3.83/1.76 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.83/1.76 ---------------------------------------- 3.83/1.76 3.83/1.76 (8) 3.83/1.76 Obligation: 3.83/1.76 Pi DP problem: 3.83/1.76 The TRS P consists of the following rules: 3.83/1.76 3.83/1.76 F_IN_GGA([], .(Head, Tail), RES) -> F_IN_GGA(.(Head, Tail), Tail, RES) 3.83/1.76 F_IN_GGA(.(Head, Tail), Y, RES) -> F_IN_GGA(Y, Tail, RES) 3.83/1.76 3.83/1.76 R is empty. 3.83/1.76 The argument filtering Pi contains the following mapping: 3.83/1.76 [] = [] 3.83/1.76 3.83/1.76 .(x1, x2) = .(x1, x2) 3.83/1.76 3.83/1.76 F_IN_GGA(x1, x2, x3) = F_IN_GGA(x1, x2) 3.83/1.76 3.83/1.76 3.83/1.76 We have to consider all (P,R,Pi)-chains 3.83/1.76 ---------------------------------------- 3.83/1.76 3.83/1.76 (9) PiDPToQDPProof (SOUND) 3.83/1.76 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.83/1.76 ---------------------------------------- 3.83/1.76 3.83/1.76 (10) 3.83/1.76 Obligation: 3.83/1.76 Q DP problem: 3.83/1.76 The TRS P consists of the following rules: 3.83/1.76 3.83/1.76 F_IN_GGA([], .(Head, Tail)) -> F_IN_GGA(.(Head, Tail), Tail) 3.83/1.76 F_IN_GGA(.(Head, Tail), Y) -> F_IN_GGA(Y, Tail) 3.83/1.76 3.83/1.76 R is empty. 3.83/1.76 Q is empty. 3.83/1.76 We have to consider all (P,Q,R)-chains. 3.83/1.76 ---------------------------------------- 3.83/1.76 3.83/1.76 (11) QDPSizeChangeProof (EQUIVALENT) 3.83/1.76 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.83/1.76 3.83/1.76 From the DPs we obtained the following set of size-change graphs: 3.83/1.76 *F_IN_GGA(.(Head, Tail), Y) -> F_IN_GGA(Y, Tail) 3.83/1.76 The graph contains the following edges 2 >= 1, 1 > 2 3.83/1.76 3.83/1.76 3.83/1.76 *F_IN_GGA([], .(Head, Tail)) -> F_IN_GGA(.(Head, Tail), Tail) 3.83/1.76 The graph contains the following edges 2 >= 1, 2 > 2 3.83/1.76 3.83/1.76 3.83/1.76 ---------------------------------------- 3.83/1.76 3.83/1.76 (12) 3.83/1.76 YES 4.02/1.80 EOF