4.01/1.85 YES 4.23/1.87 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 4.23/1.87 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.23/1.87 4.23/1.87 4.23/1.87 Left Termination of the query pattern 4.23/1.87 4.23/1.87 f(g,g,a) 4.23/1.87 4.23/1.87 w.r.t. the given Prolog program could successfully be proven: 4.23/1.87 4.23/1.87 (0) Prolog 4.23/1.87 (1) PrologToPiTRSProof [SOUND, 0 ms] 4.23/1.87 (2) PiTRS 4.23/1.87 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 4.23/1.87 (4) PiDP 4.23/1.87 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 4.23/1.87 (6) AND 4.23/1.87 (7) PiDP 4.23/1.87 (8) UsableRulesProof [EQUIVALENT, 0 ms] 4.23/1.87 (9) PiDP 4.23/1.87 (10) PiDPToQDPProof [SOUND, 17 ms] 4.23/1.87 (11) QDP 4.23/1.87 (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] 4.23/1.87 (13) YES 4.23/1.87 (14) PiDP 4.23/1.87 (15) UsableRulesProof [EQUIVALENT, 0 ms] 4.23/1.87 (16) PiDP 4.23/1.87 (17) PiDPToQDPProof [SOUND, 0 ms] 4.23/1.87 (18) QDP 4.23/1.87 (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] 4.23/1.87 (20) YES 4.23/1.87 4.23/1.87 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (0) 4.23/1.87 Obligation: 4.23/1.87 Clauses: 4.23/1.87 4.23/1.87 f(A, [], RES) :- g(A, [], RES). 4.23/1.87 f(.(A, As), .(B, Bs), RES) :- f(.(B, .(A, As)), Bs, RES). 4.23/1.87 g([], RES, RES). 4.23/1.87 g(.(C, Cs), D, RES) :- g(Cs, .(C, D), RES). 4.23/1.87 4.23/1.87 4.23/1.87 Query: f(g,g,a) 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (1) PrologToPiTRSProof (SOUND) 4.23/1.87 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 4.23/1.87 4.23/1.87 f_in_3: (b,b,f) 4.23/1.87 4.23/1.87 g_in_3: (b,b,f) 4.23/1.87 4.23/1.87 Transforming Prolog into the following Term Rewriting System: 4.23/1.87 4.23/1.87 Pi-finite rewrite system: 4.23/1.87 The TRS R consists of the following rules: 4.23/1.87 4.23/1.87 f_in_gga(A, [], RES) -> U1_gga(A, RES, g_in_gga(A, [], RES)) 4.23/1.87 g_in_gga([], RES, RES) -> g_out_gga([], RES, RES) 4.23/1.87 g_in_gga(.(C, Cs), D, RES) -> U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES)) 4.23/1.87 U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) -> g_out_gga(.(C, Cs), D, RES) 4.23/1.87 U1_gga(A, RES, g_out_gga(A, [], RES)) -> f_out_gga(A, [], RES) 4.23/1.87 f_in_gga(.(A, As), .(B, Bs), RES) -> U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES)) 4.23/1.87 U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) -> f_out_gga(.(A, As), .(B, Bs), RES) 4.23/1.87 4.23/1.87 The argument filtering Pi contains the following mapping: 4.23/1.87 f_in_gga(x1, x2, x3) = f_in_gga(x1, x2) 4.23/1.87 4.23/1.87 [] = [] 4.23/1.87 4.23/1.87 U1_gga(x1, x2, x3) = U1_gga(x3) 4.23/1.87 4.23/1.87 g_in_gga(x1, x2, x3) = g_in_gga(x1, x2) 4.23/1.87 4.23/1.87 g_out_gga(x1, x2, x3) = g_out_gga(x3) 4.23/1.87 4.23/1.87 .(x1, x2) = .(x1, x2) 4.23/1.87 4.23/1.87 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x5) 4.23/1.87 4.23/1.87 f_out_gga(x1, x2, x3) = f_out_gga(x3) 4.23/1.87 4.23/1.87 U2_gga(x1, x2, x3, x4, x5, x6) = U2_gga(x6) 4.23/1.87 4.23/1.87 4.23/1.87 4.23/1.87 4.23/1.87 4.23/1.87 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 4.23/1.87 4.23/1.87 4.23/1.87 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (2) 4.23/1.87 Obligation: 4.23/1.87 Pi-finite rewrite system: 4.23/1.87 The TRS R consists of the following rules: 4.23/1.87 4.23/1.87 f_in_gga(A, [], RES) -> U1_gga(A, RES, g_in_gga(A, [], RES)) 4.23/1.87 g_in_gga([], RES, RES) -> g_out_gga([], RES, RES) 4.23/1.87 g_in_gga(.(C, Cs), D, RES) -> U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES)) 4.23/1.87 U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) -> g_out_gga(.(C, Cs), D, RES) 4.23/1.87 U1_gga(A, RES, g_out_gga(A, [], RES)) -> f_out_gga(A, [], RES) 4.23/1.87 f_in_gga(.(A, As), .(B, Bs), RES) -> U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES)) 4.23/1.87 U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) -> f_out_gga(.(A, As), .(B, Bs), RES) 4.23/1.87 4.23/1.87 The argument filtering Pi contains the following mapping: 4.23/1.87 f_in_gga(x1, x2, x3) = f_in_gga(x1, x2) 4.23/1.87 4.23/1.87 [] = [] 4.23/1.87 4.23/1.87 U1_gga(x1, x2, x3) = U1_gga(x3) 4.23/1.87 4.23/1.87 g_in_gga(x1, x2, x3) = g_in_gga(x1, x2) 4.23/1.87 4.23/1.87 g_out_gga(x1, x2, x3) = g_out_gga(x3) 4.23/1.87 4.23/1.87 .(x1, x2) = .(x1, x2) 4.23/1.87 4.23/1.87 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x5) 4.23/1.87 4.23/1.87 f_out_gga(x1, x2, x3) = f_out_gga(x3) 4.23/1.87 4.23/1.87 U2_gga(x1, x2, x3, x4, x5, x6) = U2_gga(x6) 4.23/1.87 4.23/1.87 4.23/1.87 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (3) DependencyPairsProof (EQUIVALENT) 4.23/1.87 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 4.23/1.87 Pi DP problem: 4.23/1.87 The TRS P consists of the following rules: 4.23/1.87 4.23/1.87 F_IN_GGA(A, [], RES) -> U1_GGA(A, RES, g_in_gga(A, [], RES)) 4.23/1.87 F_IN_GGA(A, [], RES) -> G_IN_GGA(A, [], RES) 4.23/1.87 G_IN_GGA(.(C, Cs), D, RES) -> U3_GGA(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES)) 4.23/1.87 G_IN_GGA(.(C, Cs), D, RES) -> G_IN_GGA(Cs, .(C, D), RES) 4.23/1.87 F_IN_GGA(.(A, As), .(B, Bs), RES) -> U2_GGA(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES)) 4.23/1.87 F_IN_GGA(.(A, As), .(B, Bs), RES) -> F_IN_GGA(.(B, .(A, As)), Bs, RES) 4.23/1.87 4.23/1.87 The TRS R consists of the following rules: 4.23/1.87 4.23/1.87 f_in_gga(A, [], RES) -> U1_gga(A, RES, g_in_gga(A, [], RES)) 4.23/1.87 g_in_gga([], RES, RES) -> g_out_gga([], RES, RES) 4.23/1.87 g_in_gga(.(C, Cs), D, RES) -> U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES)) 4.23/1.87 U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) -> g_out_gga(.(C, Cs), D, RES) 4.23/1.87 U1_gga(A, RES, g_out_gga(A, [], RES)) -> f_out_gga(A, [], RES) 4.23/1.87 f_in_gga(.(A, As), .(B, Bs), RES) -> U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES)) 4.23/1.87 U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) -> f_out_gga(.(A, As), .(B, Bs), RES) 4.23/1.87 4.23/1.87 The argument filtering Pi contains the following mapping: 4.23/1.87 f_in_gga(x1, x2, x3) = f_in_gga(x1, x2) 4.23/1.87 4.23/1.87 [] = [] 4.23/1.87 4.23/1.87 U1_gga(x1, x2, x3) = U1_gga(x3) 4.23/1.87 4.23/1.87 g_in_gga(x1, x2, x3) = g_in_gga(x1, x2) 4.23/1.87 4.23/1.87 g_out_gga(x1, x2, x3) = g_out_gga(x3) 4.23/1.87 4.23/1.87 .(x1, x2) = .(x1, x2) 4.23/1.87 4.23/1.87 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x5) 4.23/1.87 4.23/1.87 f_out_gga(x1, x2, x3) = f_out_gga(x3) 4.23/1.87 4.23/1.87 U2_gga(x1, x2, x3, x4, x5, x6) = U2_gga(x6) 4.23/1.87 4.23/1.87 F_IN_GGA(x1, x2, x3) = F_IN_GGA(x1, x2) 4.23/1.87 4.23/1.87 U1_GGA(x1, x2, x3) = U1_GGA(x3) 4.23/1.87 4.23/1.87 G_IN_GGA(x1, x2, x3) = G_IN_GGA(x1, x2) 4.23/1.87 4.23/1.87 U3_GGA(x1, x2, x3, x4, x5) = U3_GGA(x5) 4.23/1.87 4.23/1.87 U2_GGA(x1, x2, x3, x4, x5, x6) = U2_GGA(x6) 4.23/1.87 4.23/1.87 4.23/1.87 We have to consider all (P,R,Pi)-chains 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (4) 4.23/1.87 Obligation: 4.23/1.87 Pi DP problem: 4.23/1.87 The TRS P consists of the following rules: 4.23/1.87 4.23/1.87 F_IN_GGA(A, [], RES) -> U1_GGA(A, RES, g_in_gga(A, [], RES)) 4.23/1.87 F_IN_GGA(A, [], RES) -> G_IN_GGA(A, [], RES) 4.23/1.87 G_IN_GGA(.(C, Cs), D, RES) -> U3_GGA(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES)) 4.23/1.87 G_IN_GGA(.(C, Cs), D, RES) -> G_IN_GGA(Cs, .(C, D), RES) 4.23/1.87 F_IN_GGA(.(A, As), .(B, Bs), RES) -> U2_GGA(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES)) 4.23/1.87 F_IN_GGA(.(A, As), .(B, Bs), RES) -> F_IN_GGA(.(B, .(A, As)), Bs, RES) 4.23/1.87 4.23/1.87 The TRS R consists of the following rules: 4.23/1.87 4.23/1.87 f_in_gga(A, [], RES) -> U1_gga(A, RES, g_in_gga(A, [], RES)) 4.23/1.87 g_in_gga([], RES, RES) -> g_out_gga([], RES, RES) 4.23/1.87 g_in_gga(.(C, Cs), D, RES) -> U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES)) 4.23/1.87 U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) -> g_out_gga(.(C, Cs), D, RES) 4.23/1.87 U1_gga(A, RES, g_out_gga(A, [], RES)) -> f_out_gga(A, [], RES) 4.23/1.87 f_in_gga(.(A, As), .(B, Bs), RES) -> U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES)) 4.23/1.87 U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) -> f_out_gga(.(A, As), .(B, Bs), RES) 4.23/1.87 4.23/1.87 The argument filtering Pi contains the following mapping: 4.23/1.87 f_in_gga(x1, x2, x3) = f_in_gga(x1, x2) 4.23/1.87 4.23/1.87 [] = [] 4.23/1.87 4.23/1.87 U1_gga(x1, x2, x3) = U1_gga(x3) 4.23/1.87 4.23/1.87 g_in_gga(x1, x2, x3) = g_in_gga(x1, x2) 4.23/1.87 4.23/1.87 g_out_gga(x1, x2, x3) = g_out_gga(x3) 4.23/1.87 4.23/1.87 .(x1, x2) = .(x1, x2) 4.23/1.87 4.23/1.87 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x5) 4.23/1.87 4.23/1.87 f_out_gga(x1, x2, x3) = f_out_gga(x3) 4.23/1.87 4.23/1.87 U2_gga(x1, x2, x3, x4, x5, x6) = U2_gga(x6) 4.23/1.87 4.23/1.87 F_IN_GGA(x1, x2, x3) = F_IN_GGA(x1, x2) 4.23/1.87 4.23/1.87 U1_GGA(x1, x2, x3) = U1_GGA(x3) 4.23/1.87 4.23/1.87 G_IN_GGA(x1, x2, x3) = G_IN_GGA(x1, x2) 4.23/1.87 4.23/1.87 U3_GGA(x1, x2, x3, x4, x5) = U3_GGA(x5) 4.23/1.87 4.23/1.87 U2_GGA(x1, x2, x3, x4, x5, x6) = U2_GGA(x6) 4.23/1.87 4.23/1.87 4.23/1.87 We have to consider all (P,R,Pi)-chains 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (5) DependencyGraphProof (EQUIVALENT) 4.23/1.87 The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes. 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (6) 4.23/1.87 Complex Obligation (AND) 4.23/1.87 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (7) 4.23/1.87 Obligation: 4.23/1.87 Pi DP problem: 4.23/1.87 The TRS P consists of the following rules: 4.23/1.87 4.23/1.87 G_IN_GGA(.(C, Cs), D, RES) -> G_IN_GGA(Cs, .(C, D), RES) 4.23/1.87 4.23/1.87 The TRS R consists of the following rules: 4.23/1.87 4.23/1.87 f_in_gga(A, [], RES) -> U1_gga(A, RES, g_in_gga(A, [], RES)) 4.23/1.87 g_in_gga([], RES, RES) -> g_out_gga([], RES, RES) 4.23/1.87 g_in_gga(.(C, Cs), D, RES) -> U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES)) 4.23/1.87 U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) -> g_out_gga(.(C, Cs), D, RES) 4.23/1.87 U1_gga(A, RES, g_out_gga(A, [], RES)) -> f_out_gga(A, [], RES) 4.23/1.87 f_in_gga(.(A, As), .(B, Bs), RES) -> U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES)) 4.23/1.87 U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) -> f_out_gga(.(A, As), .(B, Bs), RES) 4.23/1.87 4.23/1.87 The argument filtering Pi contains the following mapping: 4.23/1.87 f_in_gga(x1, x2, x3) = f_in_gga(x1, x2) 4.23/1.87 4.23/1.87 [] = [] 4.23/1.87 4.23/1.87 U1_gga(x1, x2, x3) = U1_gga(x3) 4.23/1.87 4.23/1.87 g_in_gga(x1, x2, x3) = g_in_gga(x1, x2) 4.23/1.87 4.23/1.87 g_out_gga(x1, x2, x3) = g_out_gga(x3) 4.23/1.87 4.23/1.87 .(x1, x2) = .(x1, x2) 4.23/1.87 4.23/1.87 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x5) 4.23/1.87 4.23/1.87 f_out_gga(x1, x2, x3) = f_out_gga(x3) 4.23/1.87 4.23/1.87 U2_gga(x1, x2, x3, x4, x5, x6) = U2_gga(x6) 4.23/1.87 4.23/1.87 G_IN_GGA(x1, x2, x3) = G_IN_GGA(x1, x2) 4.23/1.87 4.23/1.87 4.23/1.87 We have to consider all (P,R,Pi)-chains 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (8) UsableRulesProof (EQUIVALENT) 4.23/1.87 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (9) 4.23/1.87 Obligation: 4.23/1.87 Pi DP problem: 4.23/1.87 The TRS P consists of the following rules: 4.23/1.87 4.23/1.87 G_IN_GGA(.(C, Cs), D, RES) -> G_IN_GGA(Cs, .(C, D), RES) 4.23/1.87 4.23/1.87 R is empty. 4.23/1.87 The argument filtering Pi contains the following mapping: 4.23/1.87 .(x1, x2) = .(x1, x2) 4.23/1.87 4.23/1.87 G_IN_GGA(x1, x2, x3) = G_IN_GGA(x1, x2) 4.23/1.87 4.23/1.87 4.23/1.87 We have to consider all (P,R,Pi)-chains 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (10) PiDPToQDPProof (SOUND) 4.23/1.87 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (11) 4.23/1.87 Obligation: 4.23/1.87 Q DP problem: 4.23/1.87 The TRS P consists of the following rules: 4.23/1.87 4.23/1.87 G_IN_GGA(.(C, Cs), D) -> G_IN_GGA(Cs, .(C, D)) 4.23/1.87 4.23/1.87 R is empty. 4.23/1.87 Q is empty. 4.23/1.87 We have to consider all (P,Q,R)-chains. 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (12) QDPSizeChangeProof (EQUIVALENT) 4.23/1.87 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 4.23/1.87 4.23/1.87 From the DPs we obtained the following set of size-change graphs: 4.23/1.87 *G_IN_GGA(.(C, Cs), D) -> G_IN_GGA(Cs, .(C, D)) 4.23/1.87 The graph contains the following edges 1 > 1 4.23/1.87 4.23/1.87 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (13) 4.23/1.87 YES 4.23/1.87 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (14) 4.23/1.87 Obligation: 4.23/1.87 Pi DP problem: 4.23/1.87 The TRS P consists of the following rules: 4.23/1.87 4.23/1.87 F_IN_GGA(.(A, As), .(B, Bs), RES) -> F_IN_GGA(.(B, .(A, As)), Bs, RES) 4.23/1.87 4.23/1.87 The TRS R consists of the following rules: 4.23/1.87 4.23/1.87 f_in_gga(A, [], RES) -> U1_gga(A, RES, g_in_gga(A, [], RES)) 4.23/1.87 g_in_gga([], RES, RES) -> g_out_gga([], RES, RES) 4.23/1.87 g_in_gga(.(C, Cs), D, RES) -> U3_gga(C, Cs, D, RES, g_in_gga(Cs, .(C, D), RES)) 4.23/1.87 U3_gga(C, Cs, D, RES, g_out_gga(Cs, .(C, D), RES)) -> g_out_gga(.(C, Cs), D, RES) 4.23/1.87 U1_gga(A, RES, g_out_gga(A, [], RES)) -> f_out_gga(A, [], RES) 4.23/1.87 f_in_gga(.(A, As), .(B, Bs), RES) -> U2_gga(A, As, B, Bs, RES, f_in_gga(.(B, .(A, As)), Bs, RES)) 4.23/1.87 U2_gga(A, As, B, Bs, RES, f_out_gga(.(B, .(A, As)), Bs, RES)) -> f_out_gga(.(A, As), .(B, Bs), RES) 4.23/1.87 4.23/1.87 The argument filtering Pi contains the following mapping: 4.23/1.87 f_in_gga(x1, x2, x3) = f_in_gga(x1, x2) 4.23/1.87 4.23/1.87 [] = [] 4.23/1.87 4.23/1.87 U1_gga(x1, x2, x3) = U1_gga(x3) 4.23/1.87 4.23/1.87 g_in_gga(x1, x2, x3) = g_in_gga(x1, x2) 4.23/1.87 4.23/1.87 g_out_gga(x1, x2, x3) = g_out_gga(x3) 4.23/1.87 4.23/1.87 .(x1, x2) = .(x1, x2) 4.23/1.87 4.23/1.87 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x5) 4.23/1.87 4.23/1.87 f_out_gga(x1, x2, x3) = f_out_gga(x3) 4.23/1.87 4.23/1.87 U2_gga(x1, x2, x3, x4, x5, x6) = U2_gga(x6) 4.23/1.87 4.23/1.87 F_IN_GGA(x1, x2, x3) = F_IN_GGA(x1, x2) 4.23/1.87 4.23/1.87 4.23/1.87 We have to consider all (P,R,Pi)-chains 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (15) UsableRulesProof (EQUIVALENT) 4.23/1.87 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (16) 4.23/1.87 Obligation: 4.23/1.87 Pi DP problem: 4.23/1.87 The TRS P consists of the following rules: 4.23/1.87 4.23/1.87 F_IN_GGA(.(A, As), .(B, Bs), RES) -> F_IN_GGA(.(B, .(A, As)), Bs, RES) 4.23/1.87 4.23/1.87 R is empty. 4.23/1.87 The argument filtering Pi contains the following mapping: 4.23/1.87 .(x1, x2) = .(x1, x2) 4.23/1.87 4.23/1.87 F_IN_GGA(x1, x2, x3) = F_IN_GGA(x1, x2) 4.23/1.87 4.23/1.87 4.23/1.87 We have to consider all (P,R,Pi)-chains 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (17) PiDPToQDPProof (SOUND) 4.23/1.87 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (18) 4.23/1.87 Obligation: 4.23/1.87 Q DP problem: 4.23/1.87 The TRS P consists of the following rules: 4.23/1.87 4.23/1.87 F_IN_GGA(.(A, As), .(B, Bs)) -> F_IN_GGA(.(B, .(A, As)), Bs) 4.23/1.87 4.23/1.87 R is empty. 4.23/1.87 Q is empty. 4.23/1.87 We have to consider all (P,Q,R)-chains. 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (19) QDPSizeChangeProof (EQUIVALENT) 4.23/1.87 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 4.23/1.87 4.23/1.87 From the DPs we obtained the following set of size-change graphs: 4.23/1.87 *F_IN_GGA(.(A, As), .(B, Bs)) -> F_IN_GGA(.(B, .(A, As)), Bs) 4.23/1.87 The graph contains the following edges 2 > 2 4.23/1.87 4.23/1.87 4.23/1.87 ---------------------------------------- 4.23/1.87 4.23/1.87 (20) 4.23/1.87 YES 4.23/1.89 EOF