3.63/1.70 YES 3.63/1.71 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 3.63/1.71 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.63/1.71 3.63/1.71 3.63/1.71 Left Termination of the query pattern 3.63/1.71 3.63/1.71 p(g,g,g,a) 3.63/1.71 3.63/1.71 w.r.t. the given Prolog program could successfully be proven: 3.63/1.71 3.63/1.71 (0) Prolog 3.63/1.71 (1) PrologToPiTRSProof [SOUND, 0 ms] 3.63/1.71 (2) PiTRS 3.63/1.71 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 3.63/1.71 (4) PiDP 3.63/1.71 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 3.63/1.71 (6) PiDP 3.63/1.71 (7) UsableRulesProof [EQUIVALENT, 0 ms] 3.63/1.71 (8) PiDP 3.63/1.71 (9) PiDPToQDPProof [SOUND, 0 ms] 3.63/1.71 (10) QDP 3.63/1.71 (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.63/1.71 (12) YES 3.63/1.71 3.63/1.71 3.63/1.71 ---------------------------------------- 3.63/1.71 3.63/1.71 (0) 3.63/1.71 Obligation: 3.63/1.71 Clauses: 3.63/1.71 3.63/1.71 p(M, N, s(R), RES) :- p(M, R, N, RES). 3.63/1.71 p(M, s(N), R, RES) :- p(R, N, M, RES). 3.63/1.71 p(M, X1, X2, M). 3.63/1.71 3.63/1.71 3.63/1.71 Query: p(g,g,g,a) 3.63/1.71 ---------------------------------------- 3.63/1.71 3.63/1.71 (1) PrologToPiTRSProof (SOUND) 3.63/1.71 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 3.63/1.71 3.63/1.71 p_in_4: (b,b,b,f) 3.63/1.71 3.63/1.71 Transforming Prolog into the following Term Rewriting System: 3.63/1.71 3.63/1.71 Pi-finite rewrite system: 3.63/1.71 The TRS R consists of the following rules: 3.63/1.71 3.63/1.71 p_in_ggga(M, N, s(R), RES) -> U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES)) 3.63/1.71 p_in_ggga(M, s(N), R, RES) -> U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES)) 3.63/1.71 p_in_ggga(M, X1, X2, M) -> p_out_ggga(M, X1, X2, M) 3.63/1.71 U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) -> p_out_ggga(M, s(N), R, RES) 3.63/1.71 U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) -> p_out_ggga(M, N, s(R), RES) 3.63/1.71 3.63/1.71 The argument filtering Pi contains the following mapping: 3.63/1.71 p_in_ggga(x1, x2, x3, x4) = p_in_ggga(x1, x2, x3) 3.63/1.71 3.63/1.71 s(x1) = s(x1) 3.63/1.71 3.63/1.71 U1_ggga(x1, x2, x3, x4, x5) = U1_ggga(x5) 3.63/1.71 3.63/1.71 U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x5) 3.63/1.71 3.63/1.71 p_out_ggga(x1, x2, x3, x4) = p_out_ggga(x4) 3.63/1.71 3.63/1.71 3.63/1.71 3.63/1.71 3.63/1.71 3.63/1.71 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 3.63/1.71 3.63/1.71 3.63/1.71 3.63/1.71 ---------------------------------------- 3.63/1.71 3.63/1.71 (2) 3.63/1.71 Obligation: 3.63/1.71 Pi-finite rewrite system: 3.63/1.71 The TRS R consists of the following rules: 3.63/1.71 3.63/1.71 p_in_ggga(M, N, s(R), RES) -> U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES)) 3.63/1.71 p_in_ggga(M, s(N), R, RES) -> U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES)) 3.63/1.71 p_in_ggga(M, X1, X2, M) -> p_out_ggga(M, X1, X2, M) 3.63/1.71 U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) -> p_out_ggga(M, s(N), R, RES) 3.63/1.71 U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) -> p_out_ggga(M, N, s(R), RES) 3.63/1.71 3.63/1.71 The argument filtering Pi contains the following mapping: 3.63/1.71 p_in_ggga(x1, x2, x3, x4) = p_in_ggga(x1, x2, x3) 3.63/1.71 3.63/1.71 s(x1) = s(x1) 3.63/1.71 3.63/1.71 U1_ggga(x1, x2, x3, x4, x5) = U1_ggga(x5) 3.63/1.71 3.63/1.71 U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x5) 3.63/1.71 3.63/1.71 p_out_ggga(x1, x2, x3, x4) = p_out_ggga(x4) 3.63/1.71 3.63/1.71 3.63/1.71 3.63/1.71 ---------------------------------------- 3.63/1.71 3.63/1.71 (3) DependencyPairsProof (EQUIVALENT) 3.63/1.71 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 3.63/1.71 Pi DP problem: 3.63/1.71 The TRS P consists of the following rules: 3.63/1.71 3.63/1.71 P_IN_GGGA(M, N, s(R), RES) -> U1_GGGA(M, N, R, RES, p_in_ggga(M, R, N, RES)) 3.63/1.71 P_IN_GGGA(M, N, s(R), RES) -> P_IN_GGGA(M, R, N, RES) 3.63/1.71 P_IN_GGGA(M, s(N), R, RES) -> U2_GGGA(M, N, R, RES, p_in_ggga(R, N, M, RES)) 3.63/1.71 P_IN_GGGA(M, s(N), R, RES) -> P_IN_GGGA(R, N, M, RES) 3.63/1.71 3.63/1.71 The TRS R consists of the following rules: 3.63/1.71 3.63/1.71 p_in_ggga(M, N, s(R), RES) -> U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES)) 3.63/1.71 p_in_ggga(M, s(N), R, RES) -> U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES)) 3.63/1.71 p_in_ggga(M, X1, X2, M) -> p_out_ggga(M, X1, X2, M) 3.63/1.71 U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) -> p_out_ggga(M, s(N), R, RES) 3.63/1.71 U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) -> p_out_ggga(M, N, s(R), RES) 3.63/1.71 3.63/1.71 The argument filtering Pi contains the following mapping: 3.63/1.71 p_in_ggga(x1, x2, x3, x4) = p_in_ggga(x1, x2, x3) 3.63/1.71 3.63/1.71 s(x1) = s(x1) 3.63/1.71 3.63/1.71 U1_ggga(x1, x2, x3, x4, x5) = U1_ggga(x5) 3.63/1.71 3.63/1.71 U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x5) 3.63/1.71 3.63/1.71 p_out_ggga(x1, x2, x3, x4) = p_out_ggga(x4) 3.63/1.71 3.63/1.71 P_IN_GGGA(x1, x2, x3, x4) = P_IN_GGGA(x1, x2, x3) 3.63/1.71 3.63/1.71 U1_GGGA(x1, x2, x3, x4, x5) = U1_GGGA(x5) 3.63/1.71 3.63/1.71 U2_GGGA(x1, x2, x3, x4, x5) = U2_GGGA(x5) 3.63/1.71 3.63/1.71 3.63/1.71 We have to consider all (P,R,Pi)-chains 3.63/1.71 ---------------------------------------- 3.63/1.71 3.63/1.71 (4) 3.63/1.71 Obligation: 3.63/1.71 Pi DP problem: 3.63/1.71 The TRS P consists of the following rules: 3.63/1.71 3.63/1.71 P_IN_GGGA(M, N, s(R), RES) -> U1_GGGA(M, N, R, RES, p_in_ggga(M, R, N, RES)) 3.63/1.71 P_IN_GGGA(M, N, s(R), RES) -> P_IN_GGGA(M, R, N, RES) 3.63/1.71 P_IN_GGGA(M, s(N), R, RES) -> U2_GGGA(M, N, R, RES, p_in_ggga(R, N, M, RES)) 3.63/1.71 P_IN_GGGA(M, s(N), R, RES) -> P_IN_GGGA(R, N, M, RES) 3.63/1.71 3.63/1.71 The TRS R consists of the following rules: 3.63/1.71 3.63/1.71 p_in_ggga(M, N, s(R), RES) -> U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES)) 3.63/1.71 p_in_ggga(M, s(N), R, RES) -> U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES)) 3.63/1.71 p_in_ggga(M, X1, X2, M) -> p_out_ggga(M, X1, X2, M) 3.63/1.71 U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) -> p_out_ggga(M, s(N), R, RES) 3.63/1.71 U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) -> p_out_ggga(M, N, s(R), RES) 3.63/1.71 3.63/1.71 The argument filtering Pi contains the following mapping: 3.63/1.71 p_in_ggga(x1, x2, x3, x4) = p_in_ggga(x1, x2, x3) 3.63/1.71 3.63/1.71 s(x1) = s(x1) 3.63/1.71 3.63/1.71 U1_ggga(x1, x2, x3, x4, x5) = U1_ggga(x5) 3.63/1.71 3.63/1.71 U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x5) 3.63/1.71 3.63/1.71 p_out_ggga(x1, x2, x3, x4) = p_out_ggga(x4) 3.63/1.71 3.63/1.71 P_IN_GGGA(x1, x2, x3, x4) = P_IN_GGGA(x1, x2, x3) 3.63/1.71 3.63/1.71 U1_GGGA(x1, x2, x3, x4, x5) = U1_GGGA(x5) 3.63/1.71 3.63/1.71 U2_GGGA(x1, x2, x3, x4, x5) = U2_GGGA(x5) 3.63/1.71 3.63/1.71 3.63/1.71 We have to consider all (P,R,Pi)-chains 3.63/1.71 ---------------------------------------- 3.63/1.71 3.63/1.71 (5) DependencyGraphProof (EQUIVALENT) 3.63/1.71 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes. 3.63/1.71 ---------------------------------------- 3.63/1.71 3.63/1.71 (6) 3.63/1.71 Obligation: 3.63/1.71 Pi DP problem: 3.63/1.71 The TRS P consists of the following rules: 3.63/1.71 3.63/1.71 P_IN_GGGA(M, s(N), R, RES) -> P_IN_GGGA(R, N, M, RES) 3.63/1.71 P_IN_GGGA(M, N, s(R), RES) -> P_IN_GGGA(M, R, N, RES) 3.63/1.71 3.63/1.71 The TRS R consists of the following rules: 3.63/1.71 3.63/1.71 p_in_ggga(M, N, s(R), RES) -> U1_ggga(M, N, R, RES, p_in_ggga(M, R, N, RES)) 3.63/1.71 p_in_ggga(M, s(N), R, RES) -> U2_ggga(M, N, R, RES, p_in_ggga(R, N, M, RES)) 3.63/1.71 p_in_ggga(M, X1, X2, M) -> p_out_ggga(M, X1, X2, M) 3.63/1.71 U2_ggga(M, N, R, RES, p_out_ggga(R, N, M, RES)) -> p_out_ggga(M, s(N), R, RES) 3.63/1.71 U1_ggga(M, N, R, RES, p_out_ggga(M, R, N, RES)) -> p_out_ggga(M, N, s(R), RES) 3.63/1.71 3.63/1.71 The argument filtering Pi contains the following mapping: 3.63/1.71 p_in_ggga(x1, x2, x3, x4) = p_in_ggga(x1, x2, x3) 3.63/1.71 3.63/1.71 s(x1) = s(x1) 3.63/1.71 3.63/1.71 U1_ggga(x1, x2, x3, x4, x5) = U1_ggga(x5) 3.63/1.71 3.63/1.71 U2_ggga(x1, x2, x3, x4, x5) = U2_ggga(x5) 3.63/1.71 3.63/1.71 p_out_ggga(x1, x2, x3, x4) = p_out_ggga(x4) 3.63/1.71 3.63/1.71 P_IN_GGGA(x1, x2, x3, x4) = P_IN_GGGA(x1, x2, x3) 3.63/1.71 3.63/1.71 3.63/1.71 We have to consider all (P,R,Pi)-chains 3.63/1.71 ---------------------------------------- 3.63/1.71 3.63/1.71 (7) UsableRulesProof (EQUIVALENT) 3.63/1.71 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.63/1.71 ---------------------------------------- 3.63/1.71 3.63/1.71 (8) 3.63/1.71 Obligation: 3.63/1.71 Pi DP problem: 3.63/1.71 The TRS P consists of the following rules: 3.63/1.71 3.63/1.71 P_IN_GGGA(M, s(N), R, RES) -> P_IN_GGGA(R, N, M, RES) 3.63/1.71 P_IN_GGGA(M, N, s(R), RES) -> P_IN_GGGA(M, R, N, RES) 3.63/1.71 3.63/1.71 R is empty. 3.63/1.71 The argument filtering Pi contains the following mapping: 3.63/1.71 s(x1) = s(x1) 3.63/1.71 3.63/1.71 P_IN_GGGA(x1, x2, x3, x4) = P_IN_GGGA(x1, x2, x3) 3.63/1.71 3.63/1.71 3.63/1.71 We have to consider all (P,R,Pi)-chains 3.63/1.71 ---------------------------------------- 3.63/1.71 3.63/1.71 (9) PiDPToQDPProof (SOUND) 3.63/1.71 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.63/1.71 ---------------------------------------- 3.63/1.71 3.63/1.71 (10) 3.63/1.71 Obligation: 3.63/1.71 Q DP problem: 3.63/1.71 The TRS P consists of the following rules: 3.63/1.71 3.63/1.71 P_IN_GGGA(M, s(N), R) -> P_IN_GGGA(R, N, M) 3.63/1.71 P_IN_GGGA(M, N, s(R)) -> P_IN_GGGA(M, R, N) 3.63/1.71 3.63/1.71 R is empty. 3.63/1.71 Q is empty. 3.63/1.71 We have to consider all (P,Q,R)-chains. 3.63/1.71 ---------------------------------------- 3.63/1.71 3.63/1.71 (11) QDPSizeChangeProof (EQUIVALENT) 3.63/1.71 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.63/1.71 3.63/1.71 From the DPs we obtained the following set of size-change graphs: 3.63/1.71 *P_IN_GGGA(M, s(N), R) -> P_IN_GGGA(R, N, M) 3.63/1.71 The graph contains the following edges 3 >= 1, 2 > 2, 1 >= 3 3.63/1.71 3.63/1.71 3.63/1.71 *P_IN_GGGA(M, N, s(R)) -> P_IN_GGGA(M, R, N) 3.63/1.71 The graph contains the following edges 1 >= 1, 3 > 2, 2 >= 3 3.63/1.71 3.63/1.71 3.63/1.71 ---------------------------------------- 3.63/1.71 3.63/1.71 (12) 3.63/1.71 YES 3.63/1.75 EOF