6.00/2.48 YES 6.00/2.50 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 6.00/2.50 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 6.00/2.50 6.00/2.50 6.00/2.50 Left Termination of the query pattern 6.00/2.50 6.00/2.50 div(g,g,a) 6.00/2.50 6.00/2.50 w.r.t. the given Prolog program could successfully be proven: 6.00/2.50 6.00/2.50 (0) Prolog 6.00/2.50 (1) PrologToPiTRSProof [SOUND, 0 ms] 6.00/2.50 (2) PiTRS 6.00/2.50 (3) DependencyPairsProof [EQUIVALENT, 17 ms] 6.00/2.50 (4) PiDP 6.00/2.50 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 6.00/2.50 (6) AND 6.00/2.50 (7) PiDP 6.00/2.50 (8) UsableRulesProof [EQUIVALENT, 0 ms] 6.00/2.50 (9) PiDP 6.00/2.50 (10) PiDPToQDPProof [SOUND, 0 ms] 6.00/2.50 (11) QDP 6.00/2.50 (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] 6.00/2.50 (13) YES 6.00/2.50 (14) PiDP 6.00/2.50 (15) UsableRulesProof [EQUIVALENT, 0 ms] 6.00/2.50 (16) PiDP 6.00/2.50 (17) PiDPToQDPProof [EQUIVALENT, 0 ms] 6.00/2.50 (18) QDP 6.00/2.50 (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] 6.00/2.50 (20) YES 6.00/2.50 (21) PiDP 6.00/2.50 (22) UsableRulesProof [EQUIVALENT, 0 ms] 6.00/2.50 (23) PiDP 6.00/2.50 (24) PiDPToQDPProof [SOUND, 0 ms] 6.00/2.50 (25) QDP 6.00/2.50 (26) QDPOrderProof [EQUIVALENT, 25 ms] 6.00/2.50 (27) QDP 6.00/2.50 (28) PisEmptyProof [EQUIVALENT, 0 ms] 6.00/2.50 (29) YES 6.00/2.50 6.00/2.50 6.00/2.50 ---------------------------------------- 6.00/2.50 6.00/2.50 (0) 6.00/2.50 Obligation: 6.00/2.50 Clauses: 6.00/2.50 6.00/2.50 div(X, s(Y), Z) :- div_s(X, Y, Z). 6.00/2.50 div_s(0, Y, 0). 6.00/2.50 div_s(s(X), Y, 0) :- lss(X, Y). 6.00/2.50 div_s(s(X), Y, s(Z)) :- ','(sub(X, Y, R), div_s(R, Y, Z)). 6.00/2.50 lss(s(X), s(Y)) :- lss(X, Y). 6.00/2.50 lss(0, s(Y)). 6.00/2.50 sub(s(X), s(Y), Z) :- sub(X, Y, Z). 6.00/2.50 sub(X, 0, X). 6.00/2.50 6.00/2.50 6.00/2.50 Query: div(g,g,a) 6.00/2.50 ---------------------------------------- 6.00/2.50 6.00/2.50 (1) PrologToPiTRSProof (SOUND) 6.00/2.50 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 6.00/2.50 6.00/2.50 div_in_3: (b,b,f) 6.00/2.50 6.00/2.50 div_s_in_3: (b,b,f) 6.00/2.50 6.00/2.50 lss_in_2: (b,b) 6.00/2.50 6.00/2.50 sub_in_3: (b,b,f) 6.00/2.50 6.00/2.50 Transforming Prolog into the following Term Rewriting System: 6.00/2.50 6.00/2.50 Pi-finite rewrite system: 6.00/2.50 The TRS R consists of the following rules: 6.00/2.50 6.00/2.50 div_in_gga(X, s(Y), Z) -> U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z)) 6.00/2.50 div_s_in_gga(0, Y, 0) -> div_s_out_gga(0, Y, 0) 6.00/2.50 div_s_in_gga(s(X), Y, 0) -> U2_gga(X, Y, lss_in_gg(X, Y)) 6.00/2.50 lss_in_gg(s(X), s(Y)) -> U5_gg(X, Y, lss_in_gg(X, Y)) 6.00/2.50 lss_in_gg(0, s(Y)) -> lss_out_gg(0, s(Y)) 6.00/2.50 U5_gg(X, Y, lss_out_gg(X, Y)) -> lss_out_gg(s(X), s(Y)) 6.00/2.50 U2_gga(X, Y, lss_out_gg(X, Y)) -> div_s_out_gga(s(X), Y, 0) 6.00/2.50 div_s_in_gga(s(X), Y, s(Z)) -> U3_gga(X, Y, Z, sub_in_gga(X, Y, R)) 6.00/2.50 sub_in_gga(s(X), s(Y), Z) -> U6_gga(X, Y, Z, sub_in_gga(X, Y, Z)) 6.00/2.50 sub_in_gga(X, 0, X) -> sub_out_gga(X, 0, X) 6.00/2.50 U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) -> sub_out_gga(s(X), s(Y), Z) 6.00/2.50 U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) -> U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z)) 6.00/2.50 U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) -> div_s_out_gga(s(X), Y, s(Z)) 6.00/2.50 U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) -> div_out_gga(X, s(Y), Z) 6.00/2.50 6.00/2.50 The argument filtering Pi contains the following mapping: 6.00/2.50 div_in_gga(x1, x2, x3) = div_in_gga(x1, x2) 6.00/2.50 6.00/2.50 s(x1) = s(x1) 6.00/2.50 6.00/2.50 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 6.00/2.50 6.00/2.50 div_s_in_gga(x1, x2, x3) = div_s_in_gga(x1, x2) 6.00/2.50 6.00/2.50 0 = 0 6.00/2.50 6.00/2.50 div_s_out_gga(x1, x2, x3) = div_s_out_gga(x3) 6.00/2.50 6.00/2.50 U2_gga(x1, x2, x3) = U2_gga(x3) 6.00/2.50 6.00/2.50 lss_in_gg(x1, x2) = lss_in_gg(x1, x2) 6.00/2.50 6.00/2.50 U5_gg(x1, x2, x3) = U5_gg(x3) 6.00/2.50 6.00/2.50 lss_out_gg(x1, x2) = lss_out_gg 6.00/2.50 6.00/2.50 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.00/2.50 6.00/2.50 sub_in_gga(x1, x2, x3) = sub_in_gga(x1, x2) 6.00/2.50 6.00/2.50 U6_gga(x1, x2, x3, x4) = U6_gga(x4) 6.00/2.50 6.00/2.50 sub_out_gga(x1, x2, x3) = sub_out_gga(x3) 6.00/2.50 6.00/2.50 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.00/2.50 6.00/2.50 div_out_gga(x1, x2, x3) = div_out_gga(x3) 6.00/2.50 6.00/2.50 6.00/2.50 6.00/2.50 6.00/2.50 6.00/2.50 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 6.00/2.50 6.00/2.50 6.00/2.50 6.00/2.50 ---------------------------------------- 6.00/2.50 6.00/2.50 (2) 6.00/2.50 Obligation: 6.00/2.50 Pi-finite rewrite system: 6.00/2.50 The TRS R consists of the following rules: 6.00/2.50 6.00/2.50 div_in_gga(X, s(Y), Z) -> U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z)) 6.00/2.50 div_s_in_gga(0, Y, 0) -> div_s_out_gga(0, Y, 0) 6.00/2.50 div_s_in_gga(s(X), Y, 0) -> U2_gga(X, Y, lss_in_gg(X, Y)) 6.00/2.50 lss_in_gg(s(X), s(Y)) -> U5_gg(X, Y, lss_in_gg(X, Y)) 6.00/2.50 lss_in_gg(0, s(Y)) -> lss_out_gg(0, s(Y)) 6.00/2.50 U5_gg(X, Y, lss_out_gg(X, Y)) -> lss_out_gg(s(X), s(Y)) 6.00/2.50 U2_gga(X, Y, lss_out_gg(X, Y)) -> div_s_out_gga(s(X), Y, 0) 6.00/2.50 div_s_in_gga(s(X), Y, s(Z)) -> U3_gga(X, Y, Z, sub_in_gga(X, Y, R)) 6.00/2.51 sub_in_gga(s(X), s(Y), Z) -> U6_gga(X, Y, Z, sub_in_gga(X, Y, Z)) 6.00/2.51 sub_in_gga(X, 0, X) -> sub_out_gga(X, 0, X) 6.00/2.51 U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) -> sub_out_gga(s(X), s(Y), Z) 6.00/2.51 U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) -> U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z)) 6.00/2.51 U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) -> div_s_out_gga(s(X), Y, s(Z)) 6.00/2.51 U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) -> div_out_gga(X, s(Y), Z) 6.00/2.51 6.00/2.51 The argument filtering Pi contains the following mapping: 6.00/2.51 div_in_gga(x1, x2, x3) = div_in_gga(x1, x2) 6.00/2.51 6.00/2.51 s(x1) = s(x1) 6.00/2.51 6.00/2.51 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 6.00/2.51 6.00/2.51 div_s_in_gga(x1, x2, x3) = div_s_in_gga(x1, x2) 6.00/2.51 6.00/2.51 0 = 0 6.00/2.51 6.00/2.51 div_s_out_gga(x1, x2, x3) = div_s_out_gga(x3) 6.00/2.51 6.00/2.51 U2_gga(x1, x2, x3) = U2_gga(x3) 6.00/2.51 6.00/2.51 lss_in_gg(x1, x2) = lss_in_gg(x1, x2) 6.00/2.51 6.00/2.51 U5_gg(x1, x2, x3) = U5_gg(x3) 6.00/2.51 6.00/2.51 lss_out_gg(x1, x2) = lss_out_gg 6.00/2.51 6.00/2.51 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.00/2.51 6.00/2.51 sub_in_gga(x1, x2, x3) = sub_in_gga(x1, x2) 6.00/2.51 6.00/2.51 U6_gga(x1, x2, x3, x4) = U6_gga(x4) 6.00/2.51 6.00/2.51 sub_out_gga(x1, x2, x3) = sub_out_gga(x3) 6.00/2.51 6.00/2.51 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.00/2.51 6.00/2.51 div_out_gga(x1, x2, x3) = div_out_gga(x3) 6.00/2.51 6.00/2.51 6.00/2.51 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (3) DependencyPairsProof (EQUIVALENT) 6.00/2.51 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 6.00/2.51 Pi DP problem: 6.00/2.51 The TRS P consists of the following rules: 6.00/2.51 6.00/2.51 DIV_IN_GGA(X, s(Y), Z) -> U1_GGA(X, Y, Z, div_s_in_gga(X, Y, Z)) 6.00/2.51 DIV_IN_GGA(X, s(Y), Z) -> DIV_S_IN_GGA(X, Y, Z) 6.00/2.51 DIV_S_IN_GGA(s(X), Y, 0) -> U2_GGA(X, Y, lss_in_gg(X, Y)) 6.00/2.51 DIV_S_IN_GGA(s(X), Y, 0) -> LSS_IN_GG(X, Y) 6.00/2.51 LSS_IN_GG(s(X), s(Y)) -> U5_GG(X, Y, lss_in_gg(X, Y)) 6.00/2.51 LSS_IN_GG(s(X), s(Y)) -> LSS_IN_GG(X, Y) 6.00/2.51 DIV_S_IN_GGA(s(X), Y, s(Z)) -> U3_GGA(X, Y, Z, sub_in_gga(X, Y, R)) 6.00/2.51 DIV_S_IN_GGA(s(X), Y, s(Z)) -> SUB_IN_GGA(X, Y, R) 6.00/2.51 SUB_IN_GGA(s(X), s(Y), Z) -> U6_GGA(X, Y, Z, sub_in_gga(X, Y, Z)) 6.00/2.51 SUB_IN_GGA(s(X), s(Y), Z) -> SUB_IN_GGA(X, Y, Z) 6.00/2.51 U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) -> U4_GGA(X, Y, Z, div_s_in_gga(R, Y, Z)) 6.00/2.51 U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) -> DIV_S_IN_GGA(R, Y, Z) 6.00/2.51 6.00/2.51 The TRS R consists of the following rules: 6.00/2.51 6.00/2.51 div_in_gga(X, s(Y), Z) -> U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z)) 6.00/2.51 div_s_in_gga(0, Y, 0) -> div_s_out_gga(0, Y, 0) 6.00/2.51 div_s_in_gga(s(X), Y, 0) -> U2_gga(X, Y, lss_in_gg(X, Y)) 6.00/2.51 lss_in_gg(s(X), s(Y)) -> U5_gg(X, Y, lss_in_gg(X, Y)) 6.00/2.51 lss_in_gg(0, s(Y)) -> lss_out_gg(0, s(Y)) 6.00/2.51 U5_gg(X, Y, lss_out_gg(X, Y)) -> lss_out_gg(s(X), s(Y)) 6.00/2.51 U2_gga(X, Y, lss_out_gg(X, Y)) -> div_s_out_gga(s(X), Y, 0) 6.00/2.51 div_s_in_gga(s(X), Y, s(Z)) -> U3_gga(X, Y, Z, sub_in_gga(X, Y, R)) 6.00/2.51 sub_in_gga(s(X), s(Y), Z) -> U6_gga(X, Y, Z, sub_in_gga(X, Y, Z)) 6.00/2.51 sub_in_gga(X, 0, X) -> sub_out_gga(X, 0, X) 6.00/2.51 U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) -> sub_out_gga(s(X), s(Y), Z) 6.00/2.51 U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) -> U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z)) 6.00/2.51 U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) -> div_s_out_gga(s(X), Y, s(Z)) 6.00/2.51 U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) -> div_out_gga(X, s(Y), Z) 6.00/2.51 6.00/2.51 The argument filtering Pi contains the following mapping: 6.00/2.51 div_in_gga(x1, x2, x3) = div_in_gga(x1, x2) 6.00/2.51 6.00/2.51 s(x1) = s(x1) 6.00/2.51 6.00/2.51 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 6.00/2.51 6.00/2.51 div_s_in_gga(x1, x2, x3) = div_s_in_gga(x1, x2) 6.00/2.51 6.00/2.51 0 = 0 6.00/2.51 6.00/2.51 div_s_out_gga(x1, x2, x3) = div_s_out_gga(x3) 6.00/2.51 6.00/2.51 U2_gga(x1, x2, x3) = U2_gga(x3) 6.00/2.51 6.00/2.51 lss_in_gg(x1, x2) = lss_in_gg(x1, x2) 6.00/2.51 6.00/2.51 U5_gg(x1, x2, x3) = U5_gg(x3) 6.00/2.51 6.00/2.51 lss_out_gg(x1, x2) = lss_out_gg 6.00/2.51 6.00/2.51 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.00/2.51 6.00/2.51 sub_in_gga(x1, x2, x3) = sub_in_gga(x1, x2) 6.00/2.51 6.00/2.51 U6_gga(x1, x2, x3, x4) = U6_gga(x4) 6.00/2.51 6.00/2.51 sub_out_gga(x1, x2, x3) = sub_out_gga(x3) 6.00/2.51 6.00/2.51 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.00/2.51 6.00/2.51 div_out_gga(x1, x2, x3) = div_out_gga(x3) 6.00/2.51 6.00/2.51 DIV_IN_GGA(x1, x2, x3) = DIV_IN_GGA(x1, x2) 6.00/2.51 6.00/2.51 U1_GGA(x1, x2, x3, x4) = U1_GGA(x4) 6.00/2.51 6.00/2.51 DIV_S_IN_GGA(x1, x2, x3) = DIV_S_IN_GGA(x1, x2) 6.00/2.51 6.00/2.51 U2_GGA(x1, x2, x3) = U2_GGA(x3) 6.00/2.51 6.00/2.51 LSS_IN_GG(x1, x2) = LSS_IN_GG(x1, x2) 6.00/2.51 6.00/2.51 U5_GG(x1, x2, x3) = U5_GG(x3) 6.00/2.51 6.00/2.51 U3_GGA(x1, x2, x3, x4) = U3_GGA(x2, x4) 6.00/2.51 6.00/2.51 SUB_IN_GGA(x1, x2, x3) = SUB_IN_GGA(x1, x2) 6.00/2.51 6.00/2.51 U6_GGA(x1, x2, x3, x4) = U6_GGA(x4) 6.00/2.51 6.00/2.51 U4_GGA(x1, x2, x3, x4) = U4_GGA(x4) 6.00/2.51 6.00/2.51 6.00/2.51 We have to consider all (P,R,Pi)-chains 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (4) 6.00/2.51 Obligation: 6.00/2.51 Pi DP problem: 6.00/2.51 The TRS P consists of the following rules: 6.00/2.51 6.00/2.51 DIV_IN_GGA(X, s(Y), Z) -> U1_GGA(X, Y, Z, div_s_in_gga(X, Y, Z)) 6.00/2.51 DIV_IN_GGA(X, s(Y), Z) -> DIV_S_IN_GGA(X, Y, Z) 6.00/2.51 DIV_S_IN_GGA(s(X), Y, 0) -> U2_GGA(X, Y, lss_in_gg(X, Y)) 6.00/2.51 DIV_S_IN_GGA(s(X), Y, 0) -> LSS_IN_GG(X, Y) 6.00/2.51 LSS_IN_GG(s(X), s(Y)) -> U5_GG(X, Y, lss_in_gg(X, Y)) 6.00/2.51 LSS_IN_GG(s(X), s(Y)) -> LSS_IN_GG(X, Y) 6.00/2.51 DIV_S_IN_GGA(s(X), Y, s(Z)) -> U3_GGA(X, Y, Z, sub_in_gga(X, Y, R)) 6.00/2.51 DIV_S_IN_GGA(s(X), Y, s(Z)) -> SUB_IN_GGA(X, Y, R) 6.00/2.51 SUB_IN_GGA(s(X), s(Y), Z) -> U6_GGA(X, Y, Z, sub_in_gga(X, Y, Z)) 6.00/2.51 SUB_IN_GGA(s(X), s(Y), Z) -> SUB_IN_GGA(X, Y, Z) 6.00/2.51 U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) -> U4_GGA(X, Y, Z, div_s_in_gga(R, Y, Z)) 6.00/2.51 U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) -> DIV_S_IN_GGA(R, Y, Z) 6.00/2.51 6.00/2.51 The TRS R consists of the following rules: 6.00/2.51 6.00/2.51 div_in_gga(X, s(Y), Z) -> U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z)) 6.00/2.51 div_s_in_gga(0, Y, 0) -> div_s_out_gga(0, Y, 0) 6.00/2.51 div_s_in_gga(s(X), Y, 0) -> U2_gga(X, Y, lss_in_gg(X, Y)) 6.00/2.51 lss_in_gg(s(X), s(Y)) -> U5_gg(X, Y, lss_in_gg(X, Y)) 6.00/2.51 lss_in_gg(0, s(Y)) -> lss_out_gg(0, s(Y)) 6.00/2.51 U5_gg(X, Y, lss_out_gg(X, Y)) -> lss_out_gg(s(X), s(Y)) 6.00/2.51 U2_gga(X, Y, lss_out_gg(X, Y)) -> div_s_out_gga(s(X), Y, 0) 6.00/2.51 div_s_in_gga(s(X), Y, s(Z)) -> U3_gga(X, Y, Z, sub_in_gga(X, Y, R)) 6.00/2.51 sub_in_gga(s(X), s(Y), Z) -> U6_gga(X, Y, Z, sub_in_gga(X, Y, Z)) 6.00/2.51 sub_in_gga(X, 0, X) -> sub_out_gga(X, 0, X) 6.00/2.51 U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) -> sub_out_gga(s(X), s(Y), Z) 6.00/2.51 U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) -> U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z)) 6.00/2.51 U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) -> div_s_out_gga(s(X), Y, s(Z)) 6.00/2.51 U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) -> div_out_gga(X, s(Y), Z) 6.00/2.51 6.00/2.51 The argument filtering Pi contains the following mapping: 6.00/2.51 div_in_gga(x1, x2, x3) = div_in_gga(x1, x2) 6.00/2.51 6.00/2.51 s(x1) = s(x1) 6.00/2.51 6.00/2.51 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 6.00/2.51 6.00/2.51 div_s_in_gga(x1, x2, x3) = div_s_in_gga(x1, x2) 6.00/2.51 6.00/2.51 0 = 0 6.00/2.51 6.00/2.51 div_s_out_gga(x1, x2, x3) = div_s_out_gga(x3) 6.00/2.51 6.00/2.51 U2_gga(x1, x2, x3) = U2_gga(x3) 6.00/2.51 6.00/2.51 lss_in_gg(x1, x2) = lss_in_gg(x1, x2) 6.00/2.51 6.00/2.51 U5_gg(x1, x2, x3) = U5_gg(x3) 6.00/2.51 6.00/2.51 lss_out_gg(x1, x2) = lss_out_gg 6.00/2.51 6.00/2.51 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.00/2.51 6.00/2.51 sub_in_gga(x1, x2, x3) = sub_in_gga(x1, x2) 6.00/2.51 6.00/2.51 U6_gga(x1, x2, x3, x4) = U6_gga(x4) 6.00/2.51 6.00/2.51 sub_out_gga(x1, x2, x3) = sub_out_gga(x3) 6.00/2.51 6.00/2.51 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.00/2.51 6.00/2.51 div_out_gga(x1, x2, x3) = div_out_gga(x3) 6.00/2.51 6.00/2.51 DIV_IN_GGA(x1, x2, x3) = DIV_IN_GGA(x1, x2) 6.00/2.51 6.00/2.51 U1_GGA(x1, x2, x3, x4) = U1_GGA(x4) 6.00/2.51 6.00/2.51 DIV_S_IN_GGA(x1, x2, x3) = DIV_S_IN_GGA(x1, x2) 6.00/2.51 6.00/2.51 U2_GGA(x1, x2, x3) = U2_GGA(x3) 6.00/2.51 6.00/2.51 LSS_IN_GG(x1, x2) = LSS_IN_GG(x1, x2) 6.00/2.51 6.00/2.51 U5_GG(x1, x2, x3) = U5_GG(x3) 6.00/2.51 6.00/2.51 U3_GGA(x1, x2, x3, x4) = U3_GGA(x2, x4) 6.00/2.51 6.00/2.51 SUB_IN_GGA(x1, x2, x3) = SUB_IN_GGA(x1, x2) 6.00/2.51 6.00/2.51 U6_GGA(x1, x2, x3, x4) = U6_GGA(x4) 6.00/2.51 6.00/2.51 U4_GGA(x1, x2, x3, x4) = U4_GGA(x4) 6.00/2.51 6.00/2.51 6.00/2.51 We have to consider all (P,R,Pi)-chains 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (5) DependencyGraphProof (EQUIVALENT) 6.00/2.51 The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 8 less nodes. 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (6) 6.00/2.51 Complex Obligation (AND) 6.00/2.51 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (7) 6.00/2.51 Obligation: 6.00/2.51 Pi DP problem: 6.00/2.51 The TRS P consists of the following rules: 6.00/2.51 6.00/2.51 SUB_IN_GGA(s(X), s(Y), Z) -> SUB_IN_GGA(X, Y, Z) 6.00/2.51 6.00/2.51 The TRS R consists of the following rules: 6.00/2.51 6.00/2.51 div_in_gga(X, s(Y), Z) -> U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z)) 6.00/2.51 div_s_in_gga(0, Y, 0) -> div_s_out_gga(0, Y, 0) 6.00/2.51 div_s_in_gga(s(X), Y, 0) -> U2_gga(X, Y, lss_in_gg(X, Y)) 6.00/2.51 lss_in_gg(s(X), s(Y)) -> U5_gg(X, Y, lss_in_gg(X, Y)) 6.00/2.51 lss_in_gg(0, s(Y)) -> lss_out_gg(0, s(Y)) 6.00/2.51 U5_gg(X, Y, lss_out_gg(X, Y)) -> lss_out_gg(s(X), s(Y)) 6.00/2.51 U2_gga(X, Y, lss_out_gg(X, Y)) -> div_s_out_gga(s(X), Y, 0) 6.00/2.51 div_s_in_gga(s(X), Y, s(Z)) -> U3_gga(X, Y, Z, sub_in_gga(X, Y, R)) 6.00/2.51 sub_in_gga(s(X), s(Y), Z) -> U6_gga(X, Y, Z, sub_in_gga(X, Y, Z)) 6.00/2.51 sub_in_gga(X, 0, X) -> sub_out_gga(X, 0, X) 6.00/2.51 U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) -> sub_out_gga(s(X), s(Y), Z) 6.00/2.51 U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) -> U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z)) 6.00/2.51 U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) -> div_s_out_gga(s(X), Y, s(Z)) 6.00/2.51 U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) -> div_out_gga(X, s(Y), Z) 6.00/2.51 6.00/2.51 The argument filtering Pi contains the following mapping: 6.00/2.51 div_in_gga(x1, x2, x3) = div_in_gga(x1, x2) 6.00/2.51 6.00/2.51 s(x1) = s(x1) 6.00/2.51 6.00/2.51 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 6.00/2.51 6.00/2.51 div_s_in_gga(x1, x2, x3) = div_s_in_gga(x1, x2) 6.00/2.51 6.00/2.51 0 = 0 6.00/2.51 6.00/2.51 div_s_out_gga(x1, x2, x3) = div_s_out_gga(x3) 6.00/2.51 6.00/2.51 U2_gga(x1, x2, x3) = U2_gga(x3) 6.00/2.51 6.00/2.51 lss_in_gg(x1, x2) = lss_in_gg(x1, x2) 6.00/2.51 6.00/2.51 U5_gg(x1, x2, x3) = U5_gg(x3) 6.00/2.51 6.00/2.51 lss_out_gg(x1, x2) = lss_out_gg 6.00/2.51 6.00/2.51 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.00/2.51 6.00/2.51 sub_in_gga(x1, x2, x3) = sub_in_gga(x1, x2) 6.00/2.51 6.00/2.51 U6_gga(x1, x2, x3, x4) = U6_gga(x4) 6.00/2.51 6.00/2.51 sub_out_gga(x1, x2, x3) = sub_out_gga(x3) 6.00/2.51 6.00/2.51 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.00/2.51 6.00/2.51 div_out_gga(x1, x2, x3) = div_out_gga(x3) 6.00/2.51 6.00/2.51 SUB_IN_GGA(x1, x2, x3) = SUB_IN_GGA(x1, x2) 6.00/2.51 6.00/2.51 6.00/2.51 We have to consider all (P,R,Pi)-chains 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (8) UsableRulesProof (EQUIVALENT) 6.00/2.51 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (9) 6.00/2.51 Obligation: 6.00/2.51 Pi DP problem: 6.00/2.51 The TRS P consists of the following rules: 6.00/2.51 6.00/2.51 SUB_IN_GGA(s(X), s(Y), Z) -> SUB_IN_GGA(X, Y, Z) 6.00/2.51 6.00/2.51 R is empty. 6.00/2.51 The argument filtering Pi contains the following mapping: 6.00/2.51 s(x1) = s(x1) 6.00/2.51 6.00/2.51 SUB_IN_GGA(x1, x2, x3) = SUB_IN_GGA(x1, x2) 6.00/2.51 6.00/2.51 6.00/2.51 We have to consider all (P,R,Pi)-chains 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (10) PiDPToQDPProof (SOUND) 6.00/2.51 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (11) 6.00/2.51 Obligation: 6.00/2.51 Q DP problem: 6.00/2.51 The TRS P consists of the following rules: 6.00/2.51 6.00/2.51 SUB_IN_GGA(s(X), s(Y)) -> SUB_IN_GGA(X, Y) 6.00/2.51 6.00/2.51 R is empty. 6.00/2.51 Q is empty. 6.00/2.51 We have to consider all (P,Q,R)-chains. 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (12) QDPSizeChangeProof (EQUIVALENT) 6.00/2.51 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 6.00/2.51 6.00/2.51 From the DPs we obtained the following set of size-change graphs: 6.00/2.51 *SUB_IN_GGA(s(X), s(Y)) -> SUB_IN_GGA(X, Y) 6.00/2.51 The graph contains the following edges 1 > 1, 2 > 2 6.00/2.51 6.00/2.51 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (13) 6.00/2.51 YES 6.00/2.51 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (14) 6.00/2.51 Obligation: 6.00/2.51 Pi DP problem: 6.00/2.51 The TRS P consists of the following rules: 6.00/2.51 6.00/2.51 LSS_IN_GG(s(X), s(Y)) -> LSS_IN_GG(X, Y) 6.00/2.51 6.00/2.51 The TRS R consists of the following rules: 6.00/2.51 6.00/2.51 div_in_gga(X, s(Y), Z) -> U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z)) 6.00/2.51 div_s_in_gga(0, Y, 0) -> div_s_out_gga(0, Y, 0) 6.00/2.51 div_s_in_gga(s(X), Y, 0) -> U2_gga(X, Y, lss_in_gg(X, Y)) 6.00/2.51 lss_in_gg(s(X), s(Y)) -> U5_gg(X, Y, lss_in_gg(X, Y)) 6.00/2.51 lss_in_gg(0, s(Y)) -> lss_out_gg(0, s(Y)) 6.00/2.51 U5_gg(X, Y, lss_out_gg(X, Y)) -> lss_out_gg(s(X), s(Y)) 6.00/2.51 U2_gga(X, Y, lss_out_gg(X, Y)) -> div_s_out_gga(s(X), Y, 0) 6.00/2.51 div_s_in_gga(s(X), Y, s(Z)) -> U3_gga(X, Y, Z, sub_in_gga(X, Y, R)) 6.00/2.51 sub_in_gga(s(X), s(Y), Z) -> U6_gga(X, Y, Z, sub_in_gga(X, Y, Z)) 6.00/2.51 sub_in_gga(X, 0, X) -> sub_out_gga(X, 0, X) 6.00/2.51 U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) -> sub_out_gga(s(X), s(Y), Z) 6.00/2.51 U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) -> U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z)) 6.00/2.51 U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) -> div_s_out_gga(s(X), Y, s(Z)) 6.00/2.51 U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) -> div_out_gga(X, s(Y), Z) 6.00/2.51 6.00/2.51 The argument filtering Pi contains the following mapping: 6.00/2.51 div_in_gga(x1, x2, x3) = div_in_gga(x1, x2) 6.00/2.51 6.00/2.51 s(x1) = s(x1) 6.00/2.51 6.00/2.51 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 6.00/2.51 6.00/2.51 div_s_in_gga(x1, x2, x3) = div_s_in_gga(x1, x2) 6.00/2.51 6.00/2.51 0 = 0 6.00/2.51 6.00/2.51 div_s_out_gga(x1, x2, x3) = div_s_out_gga(x3) 6.00/2.51 6.00/2.51 U2_gga(x1, x2, x3) = U2_gga(x3) 6.00/2.51 6.00/2.51 lss_in_gg(x1, x2) = lss_in_gg(x1, x2) 6.00/2.51 6.00/2.51 U5_gg(x1, x2, x3) = U5_gg(x3) 6.00/2.51 6.00/2.51 lss_out_gg(x1, x2) = lss_out_gg 6.00/2.51 6.00/2.51 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.00/2.51 6.00/2.51 sub_in_gga(x1, x2, x3) = sub_in_gga(x1, x2) 6.00/2.51 6.00/2.51 U6_gga(x1, x2, x3, x4) = U6_gga(x4) 6.00/2.51 6.00/2.51 sub_out_gga(x1, x2, x3) = sub_out_gga(x3) 6.00/2.51 6.00/2.51 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.00/2.51 6.00/2.51 div_out_gga(x1, x2, x3) = div_out_gga(x3) 6.00/2.51 6.00/2.51 LSS_IN_GG(x1, x2) = LSS_IN_GG(x1, x2) 6.00/2.51 6.00/2.51 6.00/2.51 We have to consider all (P,R,Pi)-chains 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (15) UsableRulesProof (EQUIVALENT) 6.00/2.51 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (16) 6.00/2.51 Obligation: 6.00/2.51 Pi DP problem: 6.00/2.51 The TRS P consists of the following rules: 6.00/2.51 6.00/2.51 LSS_IN_GG(s(X), s(Y)) -> LSS_IN_GG(X, Y) 6.00/2.51 6.00/2.51 R is empty. 6.00/2.51 Pi is empty. 6.00/2.51 We have to consider all (P,R,Pi)-chains 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (17) PiDPToQDPProof (EQUIVALENT) 6.00/2.51 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (18) 6.00/2.51 Obligation: 6.00/2.51 Q DP problem: 6.00/2.51 The TRS P consists of the following rules: 6.00/2.51 6.00/2.51 LSS_IN_GG(s(X), s(Y)) -> LSS_IN_GG(X, Y) 6.00/2.51 6.00/2.51 R is empty. 6.00/2.51 Q is empty. 6.00/2.51 We have to consider all (P,Q,R)-chains. 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (19) QDPSizeChangeProof (EQUIVALENT) 6.00/2.51 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 6.00/2.51 6.00/2.51 From the DPs we obtained the following set of size-change graphs: 6.00/2.51 *LSS_IN_GG(s(X), s(Y)) -> LSS_IN_GG(X, Y) 6.00/2.51 The graph contains the following edges 1 > 1, 2 > 2 6.00/2.51 6.00/2.51 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (20) 6.00/2.51 YES 6.00/2.51 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (21) 6.00/2.51 Obligation: 6.00/2.51 Pi DP problem: 6.00/2.51 The TRS P consists of the following rules: 6.00/2.51 6.00/2.51 DIV_S_IN_GGA(s(X), Y, s(Z)) -> U3_GGA(X, Y, Z, sub_in_gga(X, Y, R)) 6.00/2.51 U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) -> DIV_S_IN_GGA(R, Y, Z) 6.00/2.51 6.00/2.51 The TRS R consists of the following rules: 6.00/2.51 6.00/2.51 div_in_gga(X, s(Y), Z) -> U1_gga(X, Y, Z, div_s_in_gga(X, Y, Z)) 6.00/2.51 div_s_in_gga(0, Y, 0) -> div_s_out_gga(0, Y, 0) 6.00/2.51 div_s_in_gga(s(X), Y, 0) -> U2_gga(X, Y, lss_in_gg(X, Y)) 6.00/2.51 lss_in_gg(s(X), s(Y)) -> U5_gg(X, Y, lss_in_gg(X, Y)) 6.00/2.51 lss_in_gg(0, s(Y)) -> lss_out_gg(0, s(Y)) 6.00/2.51 U5_gg(X, Y, lss_out_gg(X, Y)) -> lss_out_gg(s(X), s(Y)) 6.00/2.51 U2_gga(X, Y, lss_out_gg(X, Y)) -> div_s_out_gga(s(X), Y, 0) 6.00/2.51 div_s_in_gga(s(X), Y, s(Z)) -> U3_gga(X, Y, Z, sub_in_gga(X, Y, R)) 6.00/2.51 sub_in_gga(s(X), s(Y), Z) -> U6_gga(X, Y, Z, sub_in_gga(X, Y, Z)) 6.00/2.51 sub_in_gga(X, 0, X) -> sub_out_gga(X, 0, X) 6.00/2.51 U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) -> sub_out_gga(s(X), s(Y), Z) 6.00/2.51 U3_gga(X, Y, Z, sub_out_gga(X, Y, R)) -> U4_gga(X, Y, Z, div_s_in_gga(R, Y, Z)) 6.00/2.51 U4_gga(X, Y, Z, div_s_out_gga(R, Y, Z)) -> div_s_out_gga(s(X), Y, s(Z)) 6.00/2.51 U1_gga(X, Y, Z, div_s_out_gga(X, Y, Z)) -> div_out_gga(X, s(Y), Z) 6.00/2.51 6.00/2.51 The argument filtering Pi contains the following mapping: 6.00/2.51 div_in_gga(x1, x2, x3) = div_in_gga(x1, x2) 6.00/2.51 6.00/2.51 s(x1) = s(x1) 6.00/2.51 6.00/2.51 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 6.00/2.51 6.00/2.51 div_s_in_gga(x1, x2, x3) = div_s_in_gga(x1, x2) 6.00/2.51 6.00/2.51 0 = 0 6.00/2.51 6.00/2.51 div_s_out_gga(x1, x2, x3) = div_s_out_gga(x3) 6.00/2.51 6.00/2.51 U2_gga(x1, x2, x3) = U2_gga(x3) 6.00/2.51 6.00/2.51 lss_in_gg(x1, x2) = lss_in_gg(x1, x2) 6.00/2.51 6.00/2.51 U5_gg(x1, x2, x3) = U5_gg(x3) 6.00/2.51 6.00/2.51 lss_out_gg(x1, x2) = lss_out_gg 6.00/2.51 6.00/2.51 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.00/2.51 6.00/2.51 sub_in_gga(x1, x2, x3) = sub_in_gga(x1, x2) 6.00/2.51 6.00/2.51 U6_gga(x1, x2, x3, x4) = U6_gga(x4) 6.00/2.51 6.00/2.51 sub_out_gga(x1, x2, x3) = sub_out_gga(x3) 6.00/2.51 6.00/2.51 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.00/2.51 6.00/2.51 div_out_gga(x1, x2, x3) = div_out_gga(x3) 6.00/2.51 6.00/2.51 DIV_S_IN_GGA(x1, x2, x3) = DIV_S_IN_GGA(x1, x2) 6.00/2.51 6.00/2.51 U3_GGA(x1, x2, x3, x4) = U3_GGA(x2, x4) 6.00/2.51 6.00/2.51 6.00/2.51 We have to consider all (P,R,Pi)-chains 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (22) UsableRulesProof (EQUIVALENT) 6.00/2.51 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (23) 6.00/2.51 Obligation: 6.00/2.51 Pi DP problem: 6.00/2.51 The TRS P consists of the following rules: 6.00/2.51 6.00/2.51 DIV_S_IN_GGA(s(X), Y, s(Z)) -> U3_GGA(X, Y, Z, sub_in_gga(X, Y, R)) 6.00/2.51 U3_GGA(X, Y, Z, sub_out_gga(X, Y, R)) -> DIV_S_IN_GGA(R, Y, Z) 6.00/2.51 6.00/2.51 The TRS R consists of the following rules: 6.00/2.51 6.00/2.51 sub_in_gga(s(X), s(Y), Z) -> U6_gga(X, Y, Z, sub_in_gga(X, Y, Z)) 6.00/2.51 sub_in_gga(X, 0, X) -> sub_out_gga(X, 0, X) 6.00/2.51 U6_gga(X, Y, Z, sub_out_gga(X, Y, Z)) -> sub_out_gga(s(X), s(Y), Z) 6.00/2.51 6.00/2.51 The argument filtering Pi contains the following mapping: 6.00/2.51 s(x1) = s(x1) 6.00/2.51 6.00/2.51 0 = 0 6.00/2.51 6.00/2.51 sub_in_gga(x1, x2, x3) = sub_in_gga(x1, x2) 6.00/2.51 6.00/2.51 U6_gga(x1, x2, x3, x4) = U6_gga(x4) 6.00/2.51 6.00/2.51 sub_out_gga(x1, x2, x3) = sub_out_gga(x3) 6.00/2.51 6.00/2.51 DIV_S_IN_GGA(x1, x2, x3) = DIV_S_IN_GGA(x1, x2) 6.00/2.51 6.00/2.51 U3_GGA(x1, x2, x3, x4) = U3_GGA(x2, x4) 6.00/2.51 6.00/2.51 6.00/2.51 We have to consider all (P,R,Pi)-chains 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (24) PiDPToQDPProof (SOUND) 6.00/2.51 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (25) 6.00/2.51 Obligation: 6.00/2.51 Q DP problem: 6.00/2.51 The TRS P consists of the following rules: 6.00/2.51 6.00/2.51 DIV_S_IN_GGA(s(X), Y) -> U3_GGA(Y, sub_in_gga(X, Y)) 6.00/2.51 U3_GGA(Y, sub_out_gga(R)) -> DIV_S_IN_GGA(R, Y) 6.00/2.51 6.00/2.51 The TRS R consists of the following rules: 6.00/2.51 6.00/2.51 sub_in_gga(s(X), s(Y)) -> U6_gga(sub_in_gga(X, Y)) 6.00/2.51 sub_in_gga(X, 0) -> sub_out_gga(X) 6.00/2.51 U6_gga(sub_out_gga(Z)) -> sub_out_gga(Z) 6.00/2.51 6.00/2.51 The set Q consists of the following terms: 6.00/2.51 6.00/2.51 sub_in_gga(x0, x1) 6.00/2.51 U6_gga(x0) 6.00/2.51 6.00/2.51 We have to consider all (P,Q,R)-chains. 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (26) QDPOrderProof (EQUIVALENT) 6.00/2.51 We use the reduction pair processor [LPAR04,JAR06]. 6.00/2.51 6.00/2.51 6.00/2.51 The following pairs can be oriented strictly and are deleted. 6.00/2.51 6.00/2.51 DIV_S_IN_GGA(s(X), Y) -> U3_GGA(Y, sub_in_gga(X, Y)) 6.00/2.51 U3_GGA(Y, sub_out_gga(R)) -> DIV_S_IN_GGA(R, Y) 6.00/2.51 The remaining pairs can at least be oriented weakly. 6.00/2.51 Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: 6.00/2.51 6.00/2.51 POL( U3_GGA_2(x_1, x_2) ) = 2x_1 + x_2 + 2 6.00/2.51 POL( sub_in_gga_2(x_1, x_2) ) = 2x_1 + 1 6.00/2.51 POL( s_1(x_1) ) = 2x_1 + 2 6.00/2.51 POL( U6_gga_1(x_1) ) = 2x_1 6.00/2.51 POL( 0 ) = 2 6.00/2.51 POL( sub_out_gga_1(x_1) ) = 2x_1 + 1 6.00/2.51 POL( DIV_S_IN_GGA_2(x_1, x_2) ) = 2x_1 + 2x_2 6.00/2.51 6.00/2.51 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 6.00/2.51 6.00/2.51 sub_in_gga(s(X), s(Y)) -> U6_gga(sub_in_gga(X, Y)) 6.00/2.51 sub_in_gga(X, 0) -> sub_out_gga(X) 6.00/2.51 U6_gga(sub_out_gga(Z)) -> sub_out_gga(Z) 6.00/2.51 6.00/2.51 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (27) 6.00/2.51 Obligation: 6.00/2.51 Q DP problem: 6.00/2.51 P is empty. 6.00/2.51 The TRS R consists of the following rules: 6.00/2.51 6.00/2.51 sub_in_gga(s(X), s(Y)) -> U6_gga(sub_in_gga(X, Y)) 6.00/2.51 sub_in_gga(X, 0) -> sub_out_gga(X) 6.00/2.51 U6_gga(sub_out_gga(Z)) -> sub_out_gga(Z) 6.00/2.51 6.00/2.51 The set Q consists of the following terms: 6.00/2.51 6.00/2.51 sub_in_gga(x0, x1) 6.00/2.51 U6_gga(x0) 6.00/2.51 6.00/2.51 We have to consider all (P,Q,R)-chains. 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (28) PisEmptyProof (EQUIVALENT) 6.00/2.51 The TRS P is empty. Hence, there is no (P,Q,R) chain. 6.00/2.51 ---------------------------------------- 6.00/2.51 6.00/2.51 (29) 6.00/2.51 YES 6.31/2.54 EOF