3.89/1.80 YES 4.14/1.81 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 4.14/1.81 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.14/1.81 4.14/1.81 4.14/1.81 Left Termination of the query pattern 4.14/1.81 4.14/1.81 times(g,g,a) 4.14/1.81 4.14/1.81 w.r.t. the given Prolog program could successfully be proven: 4.14/1.81 4.14/1.81 (0) Prolog 4.14/1.81 (1) PrologToPiTRSProof [SOUND, 0 ms] 4.14/1.81 (2) PiTRS 4.14/1.81 (3) DependencyPairsProof [EQUIVALENT, 15 ms] 4.14/1.81 (4) PiDP 4.14/1.81 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 4.14/1.81 (6) PiDP 4.14/1.81 (7) UsableRulesProof [EQUIVALENT, 0 ms] 4.14/1.81 (8) PiDP 4.14/1.81 (9) PiDPToQDPProof [SOUND, 8 ms] 4.14/1.81 (10) QDP 4.14/1.81 (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] 4.14/1.81 (12) YES 4.14/1.81 4.14/1.81 4.14/1.81 ---------------------------------------- 4.14/1.81 4.14/1.81 (0) 4.14/1.81 Obligation: 4.14/1.81 Clauses: 4.14/1.81 4.14/1.81 times(X, Y, Z) :- mult(X, Y, 0, Z). 4.14/1.81 mult(0, Y, 0, 0). 4.14/1.81 mult(s(U), Y, 0, Z) :- mult(U, Y, Y, Z). 4.14/1.81 mult(X, Y, s(W), s(Z)) :- mult(X, Y, W, Z). 4.14/1.81 4.14/1.81 4.14/1.81 Query: times(g,g,a) 4.14/1.81 ---------------------------------------- 4.14/1.81 4.14/1.81 (1) PrologToPiTRSProof (SOUND) 4.14/1.81 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 4.14/1.81 4.14/1.81 times_in_3: (b,b,f) 4.14/1.81 4.14/1.81 mult_in_4: (b,b,b,f) 4.14/1.81 4.14/1.81 Transforming Prolog into the following Term Rewriting System: 4.14/1.81 4.14/1.81 Pi-finite rewrite system: 4.14/1.81 The TRS R consists of the following rules: 4.14/1.81 4.14/1.81 times_in_gga(X, Y, Z) -> U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z)) 4.14/1.81 mult_in_ggga(0, Y, 0, 0) -> mult_out_ggga(0, Y, 0, 0) 4.14/1.81 mult_in_ggga(s(U), Y, 0, Z) -> U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z)) 4.14/1.81 mult_in_ggga(X, Y, s(W), s(Z)) -> U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z)) 4.14/1.81 U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) -> mult_out_ggga(X, Y, s(W), s(Z)) 4.14/1.81 U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) -> mult_out_ggga(s(U), Y, 0, Z) 4.14/1.81 U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) -> times_out_gga(X, Y, Z) 4.14/1.81 4.14/1.81 The argument filtering Pi contains the following mapping: 4.14/1.81 times_in_gga(x1, x2, x3) = times_in_gga(x1, x2) 4.14/1.81 4.14/1.81 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 4.14/1.81 4.14/1.81 mult_in_ggga(x1, x2, x3, x4) = mult_in_ggga(x1, x2, x3) 4.14/1.81 4.14/1.81 0 = 0 4.14/1.81 4.14/1.81 mult_out_ggga(x1, x2, x3, x4) = mult_out_ggga(x4) 4.14/1.81 4.14/1.81 s(x1) = s(x1) 4.14/1.81 4.14/1.81 U2_ggga(x1, x2, x3, x4) = U2_ggga(x4) 4.14/1.81 4.14/1.81 U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) 4.14/1.81 4.14/1.81 times_out_gga(x1, x2, x3) = times_out_gga(x3) 4.14/1.81 4.14/1.81 4.14/1.81 4.14/1.81 4.14/1.81 4.14/1.81 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 4.14/1.81 4.14/1.81 4.14/1.81 4.14/1.81 ---------------------------------------- 4.14/1.81 4.14/1.81 (2) 4.14/1.81 Obligation: 4.14/1.81 Pi-finite rewrite system: 4.14/1.81 The TRS R consists of the following rules: 4.14/1.81 4.14/1.81 times_in_gga(X, Y, Z) -> U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z)) 4.14/1.81 mult_in_ggga(0, Y, 0, 0) -> mult_out_ggga(0, Y, 0, 0) 4.14/1.81 mult_in_ggga(s(U), Y, 0, Z) -> U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z)) 4.14/1.81 mult_in_ggga(X, Y, s(W), s(Z)) -> U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z)) 4.14/1.81 U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) -> mult_out_ggga(X, Y, s(W), s(Z)) 4.14/1.81 U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) -> mult_out_ggga(s(U), Y, 0, Z) 4.14/1.81 U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) -> times_out_gga(X, Y, Z) 4.14/1.81 4.14/1.81 The argument filtering Pi contains the following mapping: 4.14/1.81 times_in_gga(x1, x2, x3) = times_in_gga(x1, x2) 4.14/1.81 4.14/1.81 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 4.14/1.81 4.14/1.81 mult_in_ggga(x1, x2, x3, x4) = mult_in_ggga(x1, x2, x3) 4.14/1.81 4.14/1.81 0 = 0 4.14/1.81 4.14/1.81 mult_out_ggga(x1, x2, x3, x4) = mult_out_ggga(x4) 4.14/1.81 4.14/1.81 s(x1) = s(x1) 4.14/1.81 4.14/1.81 U2_ggga(x1, x2, x3, x4) = U2_ggga(x4) 4.14/1.81 4.14/1.81 U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) 4.14/1.81 4.14/1.81 times_out_gga(x1, x2, x3) = times_out_gga(x3) 4.14/1.81 4.14/1.81 4.14/1.81 4.14/1.81 ---------------------------------------- 4.14/1.81 4.14/1.81 (3) DependencyPairsProof (EQUIVALENT) 4.14/1.81 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 4.14/1.81 Pi DP problem: 4.14/1.81 The TRS P consists of the following rules: 4.14/1.81 4.14/1.81 TIMES_IN_GGA(X, Y, Z) -> U1_GGA(X, Y, Z, mult_in_ggga(X, Y, 0, Z)) 4.14/1.81 TIMES_IN_GGA(X, Y, Z) -> MULT_IN_GGGA(X, Y, 0, Z) 4.14/1.81 MULT_IN_GGGA(s(U), Y, 0, Z) -> U2_GGGA(U, Y, Z, mult_in_ggga(U, Y, Y, Z)) 4.14/1.81 MULT_IN_GGGA(s(U), Y, 0, Z) -> MULT_IN_GGGA(U, Y, Y, Z) 4.14/1.81 MULT_IN_GGGA(X, Y, s(W), s(Z)) -> U3_GGGA(X, Y, W, Z, mult_in_ggga(X, Y, W, Z)) 4.14/1.81 MULT_IN_GGGA(X, Y, s(W), s(Z)) -> MULT_IN_GGGA(X, Y, W, Z) 4.14/1.81 4.14/1.81 The TRS R consists of the following rules: 4.14/1.81 4.14/1.81 times_in_gga(X, Y, Z) -> U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z)) 4.14/1.81 mult_in_ggga(0, Y, 0, 0) -> mult_out_ggga(0, Y, 0, 0) 4.14/1.81 mult_in_ggga(s(U), Y, 0, Z) -> U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z)) 4.14/1.81 mult_in_ggga(X, Y, s(W), s(Z)) -> U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z)) 4.14/1.81 U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) -> mult_out_ggga(X, Y, s(W), s(Z)) 4.14/1.81 U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) -> mult_out_ggga(s(U), Y, 0, Z) 4.14/1.81 U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) -> times_out_gga(X, Y, Z) 4.14/1.81 4.14/1.81 The argument filtering Pi contains the following mapping: 4.14/1.81 times_in_gga(x1, x2, x3) = times_in_gga(x1, x2) 4.14/1.81 4.14/1.81 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 4.14/1.81 4.14/1.81 mult_in_ggga(x1, x2, x3, x4) = mult_in_ggga(x1, x2, x3) 4.14/1.81 4.14/1.81 0 = 0 4.14/1.81 4.14/1.81 mult_out_ggga(x1, x2, x3, x4) = mult_out_ggga(x4) 4.14/1.81 4.14/1.81 s(x1) = s(x1) 4.14/1.81 4.14/1.81 U2_ggga(x1, x2, x3, x4) = U2_ggga(x4) 4.14/1.81 4.14/1.81 U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) 4.14/1.81 4.14/1.81 times_out_gga(x1, x2, x3) = times_out_gga(x3) 4.14/1.81 4.14/1.81 TIMES_IN_GGA(x1, x2, x3) = TIMES_IN_GGA(x1, x2) 4.14/1.81 4.14/1.81 U1_GGA(x1, x2, x3, x4) = U1_GGA(x4) 4.14/1.81 4.14/1.81 MULT_IN_GGGA(x1, x2, x3, x4) = MULT_IN_GGGA(x1, x2, x3) 4.14/1.81 4.14/1.81 U2_GGGA(x1, x2, x3, x4) = U2_GGGA(x4) 4.14/1.81 4.14/1.81 U3_GGGA(x1, x2, x3, x4, x5) = U3_GGGA(x5) 4.14/1.81 4.14/1.81 4.14/1.81 We have to consider all (P,R,Pi)-chains 4.14/1.81 ---------------------------------------- 4.14/1.81 4.14/1.81 (4) 4.14/1.81 Obligation: 4.14/1.81 Pi DP problem: 4.14/1.81 The TRS P consists of the following rules: 4.14/1.81 4.14/1.81 TIMES_IN_GGA(X, Y, Z) -> U1_GGA(X, Y, Z, mult_in_ggga(X, Y, 0, Z)) 4.14/1.81 TIMES_IN_GGA(X, Y, Z) -> MULT_IN_GGGA(X, Y, 0, Z) 4.14/1.81 MULT_IN_GGGA(s(U), Y, 0, Z) -> U2_GGGA(U, Y, Z, mult_in_ggga(U, Y, Y, Z)) 4.14/1.81 MULT_IN_GGGA(s(U), Y, 0, Z) -> MULT_IN_GGGA(U, Y, Y, Z) 4.14/1.81 MULT_IN_GGGA(X, Y, s(W), s(Z)) -> U3_GGGA(X, Y, W, Z, mult_in_ggga(X, Y, W, Z)) 4.14/1.81 MULT_IN_GGGA(X, Y, s(W), s(Z)) -> MULT_IN_GGGA(X, Y, W, Z) 4.14/1.81 4.14/1.81 The TRS R consists of the following rules: 4.14/1.81 4.14/1.81 times_in_gga(X, Y, Z) -> U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z)) 4.14/1.81 mult_in_ggga(0, Y, 0, 0) -> mult_out_ggga(0, Y, 0, 0) 4.14/1.81 mult_in_ggga(s(U), Y, 0, Z) -> U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z)) 4.14/1.81 mult_in_ggga(X, Y, s(W), s(Z)) -> U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z)) 4.14/1.81 U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) -> mult_out_ggga(X, Y, s(W), s(Z)) 4.14/1.81 U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) -> mult_out_ggga(s(U), Y, 0, Z) 4.14/1.81 U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) -> times_out_gga(X, Y, Z) 4.14/1.81 4.14/1.81 The argument filtering Pi contains the following mapping: 4.14/1.81 times_in_gga(x1, x2, x3) = times_in_gga(x1, x2) 4.14/1.81 4.14/1.81 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 4.14/1.81 4.14/1.81 mult_in_ggga(x1, x2, x3, x4) = mult_in_ggga(x1, x2, x3) 4.14/1.81 4.14/1.81 0 = 0 4.14/1.81 4.14/1.81 mult_out_ggga(x1, x2, x3, x4) = mult_out_ggga(x4) 4.14/1.81 4.14/1.81 s(x1) = s(x1) 4.14/1.81 4.14/1.81 U2_ggga(x1, x2, x3, x4) = U2_ggga(x4) 4.14/1.81 4.14/1.81 U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) 4.14/1.81 4.14/1.81 times_out_gga(x1, x2, x3) = times_out_gga(x3) 4.14/1.81 4.14/1.81 TIMES_IN_GGA(x1, x2, x3) = TIMES_IN_GGA(x1, x2) 4.14/1.81 4.14/1.81 U1_GGA(x1, x2, x3, x4) = U1_GGA(x4) 4.14/1.81 4.14/1.81 MULT_IN_GGGA(x1, x2, x3, x4) = MULT_IN_GGGA(x1, x2, x3) 4.14/1.81 4.14/1.81 U2_GGGA(x1, x2, x3, x4) = U2_GGGA(x4) 4.14/1.81 4.14/1.81 U3_GGGA(x1, x2, x3, x4, x5) = U3_GGGA(x5) 4.14/1.81 4.14/1.81 4.14/1.81 We have to consider all (P,R,Pi)-chains 4.14/1.81 ---------------------------------------- 4.14/1.81 4.14/1.81 (5) DependencyGraphProof (EQUIVALENT) 4.14/1.81 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes. 4.14/1.81 ---------------------------------------- 4.14/1.81 4.14/1.81 (6) 4.14/1.81 Obligation: 4.14/1.81 Pi DP problem: 4.14/1.81 The TRS P consists of the following rules: 4.14/1.81 4.14/1.81 MULT_IN_GGGA(X, Y, s(W), s(Z)) -> MULT_IN_GGGA(X, Y, W, Z) 4.14/1.81 MULT_IN_GGGA(s(U), Y, 0, Z) -> MULT_IN_GGGA(U, Y, Y, Z) 4.14/1.81 4.14/1.81 The TRS R consists of the following rules: 4.14/1.81 4.14/1.81 times_in_gga(X, Y, Z) -> U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z)) 4.14/1.81 mult_in_ggga(0, Y, 0, 0) -> mult_out_ggga(0, Y, 0, 0) 4.14/1.81 mult_in_ggga(s(U), Y, 0, Z) -> U2_ggga(U, Y, Z, mult_in_ggga(U, Y, Y, Z)) 4.14/1.81 mult_in_ggga(X, Y, s(W), s(Z)) -> U3_ggga(X, Y, W, Z, mult_in_ggga(X, Y, W, Z)) 4.14/1.81 U3_ggga(X, Y, W, Z, mult_out_ggga(X, Y, W, Z)) -> mult_out_ggga(X, Y, s(W), s(Z)) 4.14/1.81 U2_ggga(U, Y, Z, mult_out_ggga(U, Y, Y, Z)) -> mult_out_ggga(s(U), Y, 0, Z) 4.14/1.81 U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) -> times_out_gga(X, Y, Z) 4.14/1.81 4.14/1.81 The argument filtering Pi contains the following mapping: 4.14/1.81 times_in_gga(x1, x2, x3) = times_in_gga(x1, x2) 4.14/1.81 4.14/1.81 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 4.14/1.81 4.14/1.81 mult_in_ggga(x1, x2, x3, x4) = mult_in_ggga(x1, x2, x3) 4.14/1.81 4.14/1.81 0 = 0 4.14/1.81 4.14/1.81 mult_out_ggga(x1, x2, x3, x4) = mult_out_ggga(x4) 4.14/1.81 4.14/1.81 s(x1) = s(x1) 4.14/1.81 4.14/1.81 U2_ggga(x1, x2, x3, x4) = U2_ggga(x4) 4.14/1.81 4.14/1.81 U3_ggga(x1, x2, x3, x4, x5) = U3_ggga(x5) 4.14/1.81 4.14/1.81 times_out_gga(x1, x2, x3) = times_out_gga(x3) 4.14/1.81 4.14/1.81 MULT_IN_GGGA(x1, x2, x3, x4) = MULT_IN_GGGA(x1, x2, x3) 4.14/1.81 4.14/1.81 4.14/1.81 We have to consider all (P,R,Pi)-chains 4.14/1.81 ---------------------------------------- 4.14/1.81 4.14/1.81 (7) UsableRulesProof (EQUIVALENT) 4.14/1.81 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 4.14/1.81 ---------------------------------------- 4.14/1.81 4.14/1.81 (8) 4.14/1.81 Obligation: 4.14/1.81 Pi DP problem: 4.14/1.81 The TRS P consists of the following rules: 4.14/1.81 4.14/1.81 MULT_IN_GGGA(X, Y, s(W), s(Z)) -> MULT_IN_GGGA(X, Y, W, Z) 4.14/1.81 MULT_IN_GGGA(s(U), Y, 0, Z) -> MULT_IN_GGGA(U, Y, Y, Z) 4.14/1.81 4.14/1.81 R is empty. 4.14/1.81 The argument filtering Pi contains the following mapping: 4.14/1.81 0 = 0 4.14/1.81 4.14/1.81 s(x1) = s(x1) 4.14/1.81 4.14/1.81 MULT_IN_GGGA(x1, x2, x3, x4) = MULT_IN_GGGA(x1, x2, x3) 4.14/1.81 4.14/1.81 4.14/1.81 We have to consider all (P,R,Pi)-chains 4.14/1.81 ---------------------------------------- 4.14/1.81 4.14/1.81 (9) PiDPToQDPProof (SOUND) 4.14/1.81 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 4.14/1.81 ---------------------------------------- 4.14/1.81 4.14/1.81 (10) 4.14/1.81 Obligation: 4.14/1.81 Q DP problem: 4.14/1.81 The TRS P consists of the following rules: 4.14/1.81 4.14/1.81 MULT_IN_GGGA(X, Y, s(W)) -> MULT_IN_GGGA(X, Y, W) 4.14/1.81 MULT_IN_GGGA(s(U), Y, 0) -> MULT_IN_GGGA(U, Y, Y) 4.14/1.81 4.14/1.81 R is empty. 4.14/1.81 Q is empty. 4.14/1.81 We have to consider all (P,Q,R)-chains. 4.14/1.81 ---------------------------------------- 4.14/1.81 4.14/1.81 (11) QDPSizeChangeProof (EQUIVALENT) 4.14/1.81 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 4.14/1.81 4.14/1.81 From the DPs we obtained the following set of size-change graphs: 4.14/1.81 *MULT_IN_GGGA(X, Y, s(W)) -> MULT_IN_GGGA(X, Y, W) 4.14/1.81 The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3 4.14/1.81 4.14/1.81 4.14/1.81 *MULT_IN_GGGA(s(U), Y, 0) -> MULT_IN_GGGA(U, Y, Y) 4.14/1.81 The graph contains the following edges 1 > 1, 2 >= 2, 2 >= 3 4.14/1.81 4.14/1.81 4.14/1.81 ---------------------------------------- 4.14/1.81 4.14/1.81 (12) 4.14/1.81 YES 4.14/1.83 EOF