4.64/2.00 YES 4.64/2.00 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 4.64/2.00 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.64/2.00 4.64/2.00 4.64/2.00 Left Termination of the query pattern 4.64/2.00 4.64/2.00 avg(g,g,a) 4.64/2.00 4.64/2.00 w.r.t. the given Prolog program could successfully be proven: 4.64/2.00 4.64/2.00 (0) Prolog 4.64/2.00 (1) PrologToPiTRSProof [SOUND, 0 ms] 4.64/2.00 (2) PiTRS 4.64/2.00 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 4.64/2.00 (4) PiDP 4.64/2.00 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 4.64/2.00 (6) PiDP 4.64/2.00 (7) UsableRulesProof [EQUIVALENT, 0 ms] 4.64/2.00 (8) PiDP 4.64/2.00 (9) PiDPToQDPProof [SOUND, 0 ms] 4.64/2.00 (10) QDP 4.64/2.00 (11) MRRProof [EQUIVALENT, 17 ms] 4.64/2.00 (12) QDP 4.64/2.00 (13) PisEmptyProof [EQUIVALENT, 0 ms] 4.64/2.00 (14) YES 4.64/2.00 4.64/2.00 4.64/2.00 ---------------------------------------- 4.64/2.00 4.64/2.00 (0) 4.64/2.00 Obligation: 4.64/2.00 Clauses: 4.64/2.00 4.64/2.00 avg(s(X), Y, Z) :- avg(X, s(Y), Z). 4.64/2.00 avg(X, s(s(s(Y))), s(Z)) :- avg(s(X), Y, Z). 4.64/2.00 avg(0, 0, 0). 4.64/2.00 avg(0, s(0), 0). 4.64/2.00 avg(0, s(s(0)), s(0)). 4.64/2.00 4.64/2.00 4.64/2.00 Query: avg(g,g,a) 4.64/2.00 ---------------------------------------- 4.64/2.00 4.64/2.00 (1) PrologToPiTRSProof (SOUND) 4.64/2.00 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 4.64/2.00 4.64/2.00 avg_in_3: (b,b,f) 4.64/2.00 4.64/2.00 Transforming Prolog into the following Term Rewriting System: 4.64/2.00 4.64/2.00 Pi-finite rewrite system: 4.64/2.00 The TRS R consists of the following rules: 4.64/2.00 4.64/2.00 avg_in_gga(s(X), Y, Z) -> U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z)) 4.64/2.00 avg_in_gga(X, s(s(s(Y))), s(Z)) -> U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z)) 4.64/2.00 avg_in_gga(0, 0, 0) -> avg_out_gga(0, 0, 0) 4.64/2.00 avg_in_gga(0, s(0), 0) -> avg_out_gga(0, s(0), 0) 4.64/2.00 avg_in_gga(0, s(s(0)), s(0)) -> avg_out_gga(0, s(s(0)), s(0)) 4.64/2.00 U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) -> avg_out_gga(X, s(s(s(Y))), s(Z)) 4.64/2.00 U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) -> avg_out_gga(s(X), Y, Z) 4.64/2.00 4.64/2.00 The argument filtering Pi contains the following mapping: 4.64/2.00 avg_in_gga(x1, x2, x3) = avg_in_gga(x1, x2) 4.64/2.00 4.64/2.00 s(x1) = s(x1) 4.64/2.00 4.64/2.00 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 4.64/2.00 4.64/2.00 U2_gga(x1, x2, x3, x4) = U2_gga(x4) 4.64/2.00 4.64/2.00 0 = 0 4.64/2.00 4.64/2.00 avg_out_gga(x1, x2, x3) = avg_out_gga(x3) 4.64/2.00 4.64/2.00 4.64/2.00 4.64/2.00 4.64/2.00 4.64/2.00 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 4.64/2.00 4.64/2.00 4.64/2.00 4.64/2.00 ---------------------------------------- 4.64/2.00 4.64/2.01 (2) 4.64/2.01 Obligation: 4.64/2.01 Pi-finite rewrite system: 4.64/2.01 The TRS R consists of the following rules: 4.64/2.01 4.64/2.01 avg_in_gga(s(X), Y, Z) -> U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z)) 4.64/2.01 avg_in_gga(X, s(s(s(Y))), s(Z)) -> U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z)) 4.64/2.01 avg_in_gga(0, 0, 0) -> avg_out_gga(0, 0, 0) 4.64/2.01 avg_in_gga(0, s(0), 0) -> avg_out_gga(0, s(0), 0) 4.64/2.01 avg_in_gga(0, s(s(0)), s(0)) -> avg_out_gga(0, s(s(0)), s(0)) 4.64/2.01 U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) -> avg_out_gga(X, s(s(s(Y))), s(Z)) 4.64/2.01 U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) -> avg_out_gga(s(X), Y, Z) 4.64/2.01 4.64/2.01 The argument filtering Pi contains the following mapping: 4.64/2.01 avg_in_gga(x1, x2, x3) = avg_in_gga(x1, x2) 4.64/2.01 4.64/2.01 s(x1) = s(x1) 4.64/2.01 4.64/2.01 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 4.64/2.01 4.64/2.01 U2_gga(x1, x2, x3, x4) = U2_gga(x4) 4.64/2.01 4.64/2.01 0 = 0 4.64/2.01 4.64/2.01 avg_out_gga(x1, x2, x3) = avg_out_gga(x3) 4.64/2.01 4.64/2.01 4.64/2.01 4.64/2.01 ---------------------------------------- 4.64/2.01 4.64/2.01 (3) DependencyPairsProof (EQUIVALENT) 4.64/2.01 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 4.64/2.01 Pi DP problem: 4.64/2.01 The TRS P consists of the following rules: 4.64/2.01 4.64/2.01 AVG_IN_GGA(s(X), Y, Z) -> U1_GGA(X, Y, Z, avg_in_gga(X, s(Y), Z)) 4.64/2.01 AVG_IN_GGA(s(X), Y, Z) -> AVG_IN_GGA(X, s(Y), Z) 4.64/2.01 AVG_IN_GGA(X, s(s(s(Y))), s(Z)) -> U2_GGA(X, Y, Z, avg_in_gga(s(X), Y, Z)) 4.64/2.01 AVG_IN_GGA(X, s(s(s(Y))), s(Z)) -> AVG_IN_GGA(s(X), Y, Z) 4.64/2.01 4.64/2.01 The TRS R consists of the following rules: 4.64/2.01 4.64/2.01 avg_in_gga(s(X), Y, Z) -> U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z)) 4.64/2.01 avg_in_gga(X, s(s(s(Y))), s(Z)) -> U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z)) 4.64/2.01 avg_in_gga(0, 0, 0) -> avg_out_gga(0, 0, 0) 4.64/2.01 avg_in_gga(0, s(0), 0) -> avg_out_gga(0, s(0), 0) 4.64/2.01 avg_in_gga(0, s(s(0)), s(0)) -> avg_out_gga(0, s(s(0)), s(0)) 4.64/2.01 U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) -> avg_out_gga(X, s(s(s(Y))), s(Z)) 4.64/2.01 U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) -> avg_out_gga(s(X), Y, Z) 4.64/2.01 4.64/2.01 The argument filtering Pi contains the following mapping: 4.64/2.01 avg_in_gga(x1, x2, x3) = avg_in_gga(x1, x2) 4.64/2.01 4.64/2.01 s(x1) = s(x1) 4.64/2.01 4.64/2.01 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 4.64/2.01 4.64/2.01 U2_gga(x1, x2, x3, x4) = U2_gga(x4) 4.64/2.01 4.64/2.01 0 = 0 4.64/2.01 4.64/2.01 avg_out_gga(x1, x2, x3) = avg_out_gga(x3) 4.64/2.01 4.64/2.01 AVG_IN_GGA(x1, x2, x3) = AVG_IN_GGA(x1, x2) 4.64/2.01 4.64/2.01 U1_GGA(x1, x2, x3, x4) = U1_GGA(x4) 4.64/2.01 4.64/2.01 U2_GGA(x1, x2, x3, x4) = U2_GGA(x4) 4.64/2.01 4.64/2.01 4.64/2.01 We have to consider all (P,R,Pi)-chains 4.64/2.01 ---------------------------------------- 4.64/2.01 4.64/2.01 (4) 4.64/2.01 Obligation: 4.64/2.01 Pi DP problem: 4.64/2.01 The TRS P consists of the following rules: 4.64/2.01 4.64/2.01 AVG_IN_GGA(s(X), Y, Z) -> U1_GGA(X, Y, Z, avg_in_gga(X, s(Y), Z)) 4.64/2.01 AVG_IN_GGA(s(X), Y, Z) -> AVG_IN_GGA(X, s(Y), Z) 4.64/2.01 AVG_IN_GGA(X, s(s(s(Y))), s(Z)) -> U2_GGA(X, Y, Z, avg_in_gga(s(X), Y, Z)) 4.64/2.01 AVG_IN_GGA(X, s(s(s(Y))), s(Z)) -> AVG_IN_GGA(s(X), Y, Z) 4.64/2.01 4.64/2.01 The TRS R consists of the following rules: 4.64/2.01 4.64/2.01 avg_in_gga(s(X), Y, Z) -> U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z)) 4.64/2.01 avg_in_gga(X, s(s(s(Y))), s(Z)) -> U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z)) 4.64/2.01 avg_in_gga(0, 0, 0) -> avg_out_gga(0, 0, 0) 4.64/2.01 avg_in_gga(0, s(0), 0) -> avg_out_gga(0, s(0), 0) 4.64/2.01 avg_in_gga(0, s(s(0)), s(0)) -> avg_out_gga(0, s(s(0)), s(0)) 4.64/2.01 U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) -> avg_out_gga(X, s(s(s(Y))), s(Z)) 4.64/2.01 U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) -> avg_out_gga(s(X), Y, Z) 4.64/2.01 4.64/2.01 The argument filtering Pi contains the following mapping: 4.64/2.01 avg_in_gga(x1, x2, x3) = avg_in_gga(x1, x2) 4.64/2.01 4.64/2.01 s(x1) = s(x1) 4.64/2.01 4.64/2.01 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 4.64/2.01 4.64/2.01 U2_gga(x1, x2, x3, x4) = U2_gga(x4) 4.64/2.01 4.64/2.01 0 = 0 4.64/2.01 4.64/2.01 avg_out_gga(x1, x2, x3) = avg_out_gga(x3) 4.64/2.01 4.64/2.01 AVG_IN_GGA(x1, x2, x3) = AVG_IN_GGA(x1, x2) 4.64/2.01 4.64/2.01 U1_GGA(x1, x2, x3, x4) = U1_GGA(x4) 4.64/2.01 4.64/2.01 U2_GGA(x1, x2, x3, x4) = U2_GGA(x4) 4.64/2.01 4.64/2.01 4.64/2.01 We have to consider all (P,R,Pi)-chains 4.64/2.01 ---------------------------------------- 4.64/2.01 4.64/2.01 (5) DependencyGraphProof (EQUIVALENT) 4.64/2.01 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes. 4.64/2.01 ---------------------------------------- 4.64/2.01 4.64/2.01 (6) 4.64/2.01 Obligation: 4.64/2.01 Pi DP problem: 4.64/2.01 The TRS P consists of the following rules: 4.64/2.01 4.64/2.01 AVG_IN_GGA(X, s(s(s(Y))), s(Z)) -> AVG_IN_GGA(s(X), Y, Z) 4.64/2.01 AVG_IN_GGA(s(X), Y, Z) -> AVG_IN_GGA(X, s(Y), Z) 4.64/2.01 4.64/2.01 The TRS R consists of the following rules: 4.64/2.01 4.64/2.01 avg_in_gga(s(X), Y, Z) -> U1_gga(X, Y, Z, avg_in_gga(X, s(Y), Z)) 4.64/2.01 avg_in_gga(X, s(s(s(Y))), s(Z)) -> U2_gga(X, Y, Z, avg_in_gga(s(X), Y, Z)) 4.64/2.01 avg_in_gga(0, 0, 0) -> avg_out_gga(0, 0, 0) 4.64/2.01 avg_in_gga(0, s(0), 0) -> avg_out_gga(0, s(0), 0) 4.64/2.01 avg_in_gga(0, s(s(0)), s(0)) -> avg_out_gga(0, s(s(0)), s(0)) 4.64/2.01 U2_gga(X, Y, Z, avg_out_gga(s(X), Y, Z)) -> avg_out_gga(X, s(s(s(Y))), s(Z)) 4.64/2.01 U1_gga(X, Y, Z, avg_out_gga(X, s(Y), Z)) -> avg_out_gga(s(X), Y, Z) 4.64/2.01 4.64/2.01 The argument filtering Pi contains the following mapping: 4.64/2.01 avg_in_gga(x1, x2, x3) = avg_in_gga(x1, x2) 4.64/2.01 4.64/2.01 s(x1) = s(x1) 4.64/2.01 4.64/2.01 U1_gga(x1, x2, x3, x4) = U1_gga(x4) 4.64/2.01 4.64/2.01 U2_gga(x1, x2, x3, x4) = U2_gga(x4) 4.64/2.01 4.64/2.01 0 = 0 4.64/2.01 4.64/2.01 avg_out_gga(x1, x2, x3) = avg_out_gga(x3) 4.64/2.01 4.64/2.01 AVG_IN_GGA(x1, x2, x3) = AVG_IN_GGA(x1, x2) 4.64/2.01 4.64/2.01 4.64/2.01 We have to consider all (P,R,Pi)-chains 4.64/2.01 ---------------------------------------- 4.64/2.01 4.64/2.01 (7) UsableRulesProof (EQUIVALENT) 4.64/2.01 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 4.64/2.01 ---------------------------------------- 4.64/2.01 4.64/2.01 (8) 4.64/2.01 Obligation: 4.64/2.01 Pi DP problem: 4.64/2.01 The TRS P consists of the following rules: 4.64/2.01 4.64/2.01 AVG_IN_GGA(X, s(s(s(Y))), s(Z)) -> AVG_IN_GGA(s(X), Y, Z) 4.64/2.01 AVG_IN_GGA(s(X), Y, Z) -> AVG_IN_GGA(X, s(Y), Z) 4.64/2.01 4.64/2.01 R is empty. 4.64/2.01 The argument filtering Pi contains the following mapping: 4.64/2.01 s(x1) = s(x1) 4.64/2.01 4.64/2.01 AVG_IN_GGA(x1, x2, x3) = AVG_IN_GGA(x1, x2) 4.64/2.01 4.64/2.01 4.64/2.01 We have to consider all (P,R,Pi)-chains 4.64/2.01 ---------------------------------------- 4.64/2.01 4.64/2.01 (9) PiDPToQDPProof (SOUND) 4.64/2.01 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 4.64/2.01 ---------------------------------------- 4.64/2.01 4.64/2.01 (10) 4.64/2.01 Obligation: 4.64/2.01 Q DP problem: 4.64/2.01 The TRS P consists of the following rules: 4.64/2.01 4.64/2.01 AVG_IN_GGA(X, s(s(s(Y)))) -> AVG_IN_GGA(s(X), Y) 4.64/2.01 AVG_IN_GGA(s(X), Y) -> AVG_IN_GGA(X, s(Y)) 4.64/2.01 4.64/2.01 R is empty. 4.64/2.01 Q is empty. 4.64/2.01 We have to consider all (P,Q,R)-chains. 4.64/2.01 ---------------------------------------- 4.64/2.01 4.64/2.01 (11) MRRProof (EQUIVALENT) 4.64/2.01 By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented. 4.64/2.01 4.64/2.01 Strictly oriented dependency pairs: 4.64/2.01 4.64/2.01 AVG_IN_GGA(X, s(s(s(Y)))) -> AVG_IN_GGA(s(X), Y) 4.64/2.01 AVG_IN_GGA(s(X), Y) -> AVG_IN_GGA(X, s(Y)) 4.64/2.01 4.64/2.01 4.64/2.01 Used ordering: Polynomial interpretation [POLO]: 4.64/2.01 4.64/2.01 POL(AVG_IN_GGA(x_1, x_2)) = 2*x_1 + x_2 4.64/2.01 POL(s(x_1)) = 1 + x_1 4.64/2.01 4.64/2.01 4.64/2.01 ---------------------------------------- 4.64/2.01 4.64/2.01 (12) 4.64/2.01 Obligation: 4.64/2.01 Q DP problem: 4.64/2.01 P is empty. 4.64/2.01 R is empty. 4.64/2.01 Q is empty. 4.64/2.01 We have to consider all (P,Q,R)-chains. 4.64/2.01 ---------------------------------------- 4.64/2.01 4.64/2.01 (13) PisEmptyProof (EQUIVALENT) 4.64/2.01 The TRS P is empty. Hence, there is no (P,Q,R) chain. 4.64/2.01 ---------------------------------------- 4.64/2.01 4.64/2.01 (14) 4.64/2.01 YES 4.64/2.02 EOF