4.97/2.16 YES 5.15/2.20 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 5.15/2.20 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.15/2.20 5.15/2.20 5.15/2.20 Left Termination of the query pattern 5.15/2.20 5.15/2.20 goal(g,a,a) 5.15/2.20 5.15/2.20 w.r.t. the given Prolog program could successfully be proven: 5.15/2.20 5.15/2.20 (0) Prolog 5.15/2.20 (1) PrologToPiTRSProof [SOUND, 26 ms] 5.15/2.20 (2) PiTRS 5.15/2.20 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 5.15/2.20 (4) PiDP 5.15/2.20 (5) DependencyGraphProof [EQUIVALENT, 4 ms] 5.15/2.20 (6) AND 5.15/2.20 (7) PiDP 5.15/2.20 (8) UsableRulesProof [EQUIVALENT, 0 ms] 5.15/2.20 (9) PiDP 5.15/2.20 (10) PiDPToQDPProof [SOUND, 0 ms] 5.15/2.20 (11) QDP 5.15/2.20 (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] 5.15/2.20 (13) YES 5.15/2.20 (14) PiDP 5.15/2.20 (15) UsableRulesProof [EQUIVALENT, 0 ms] 5.15/2.20 (16) PiDP 5.15/2.20 (17) PiDPToQDPProof [SOUND, 0 ms] 5.15/2.20 (18) QDP 5.15/2.20 (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] 5.15/2.20 (20) YES 5.15/2.20 (21) PiDP 5.15/2.20 (22) UsableRulesProof [EQUIVALENT, 0 ms] 5.15/2.20 (23) PiDP 5.15/2.20 (24) PiDPToQDPProof [SOUND, 0 ms] 5.15/2.20 (25) QDP 5.15/2.20 (26) QDPSizeChangeProof [EQUIVALENT, 0 ms] 5.15/2.20 (27) YES 5.15/2.20 5.15/2.20 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (0) 5.15/2.20 Obligation: 5.15/2.20 Clauses: 5.15/2.20 5.15/2.20 goal(A, B, C) :- ','(s2t(A, T), tapplast(T, B, C)). 5.15/2.20 tapplast(L, X, Last) :- ','(tappend(L, node(nil, X, nil), LX), tlast(Last, LX)). 5.15/2.20 tlast(X, node(nil, X, nil)). 5.15/2.20 tlast(X, node(L, H, R)) :- tlast(X, L). 5.15/2.20 tlast(X, node(L, H, R)) :- tlast(X, R). 5.15/2.20 tappend(nil, T, T). 5.15/2.20 tappend(node(nil, X, T2), T1, node(T1, X, T2)). 5.15/2.20 tappend(node(T1, X, nil), T2, node(T1, X, T2)). 5.15/2.20 tappend(node(T1, X, T2), T3, node(U, X, T2)) :- tappend(T1, T3, U). 5.15/2.20 tappend(node(T1, X, T2), T3, node(T1, X, U)) :- tappend(T2, T3, U). 5.15/2.20 s2t(s(X), node(T, Y, T)) :- s2t(X, T). 5.15/2.20 s2t(s(X), node(nil, Y, T)) :- s2t(X, T). 5.15/2.20 s2t(s(X), node(T, Y, nil)) :- s2t(X, T). 5.15/2.20 s2t(s(X), node(nil, Y, nil)). 5.15/2.20 s2t(0, nil). 5.15/2.20 5.15/2.20 5.15/2.20 Query: goal(g,a,a) 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (1) PrologToPiTRSProof (SOUND) 5.15/2.20 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 5.15/2.20 5.15/2.20 goal_in_3: (b,f,f) 5.15/2.20 5.15/2.20 s2t_in_2: (b,f) 5.15/2.20 5.15/2.20 tapplast_in_3: (b,f,f) 5.15/2.20 5.15/2.20 tappend_in_3: (b,b,f) 5.15/2.20 5.15/2.20 tlast_in_2: (f,b) 5.15/2.20 5.15/2.20 Transforming Prolog into the following Term Rewriting System: 5.15/2.20 5.15/2.20 Pi-finite rewrite system: 5.15/2.20 The TRS R consists of the following rules: 5.15/2.20 5.15/2.20 goal_in_gaa(A, B, C) -> U1_gaa(A, B, C, s2t_in_ga(A, T)) 5.15/2.20 s2t_in_ga(s(X), node(T, Y, T)) -> U9_ga(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(nil, Y, T)) -> U10_ga(X, Y, T, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(T, Y, nil)) -> U11_ga(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(nil, Y, nil)) -> s2t_out_ga(s(X), node(nil, Y, nil)) 5.15/2.20 s2t_in_ga(0, nil) -> s2t_out_ga(0, nil) 5.15/2.20 U11_ga(X, T, Y, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(T, Y, nil)) 5.15/2.20 U10_ga(X, Y, T, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(nil, Y, T)) 5.15/2.20 U9_ga(X, T, Y, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(T, Y, T)) 5.15/2.20 U1_gaa(A, B, C, s2t_out_ga(A, T)) -> U2_gaa(A, B, C, tapplast_in_gaa(T, B, C)) 5.15/2.20 tapplast_in_gaa(L, X, Last) -> U3_gaa(L, X, Last, tappend_in_gga(L, node(nil, X, nil), LX)) 5.15/2.20 tappend_in_gga(nil, T, T) -> tappend_out_gga(nil, T, T) 5.15/2.20 tappend_in_gga(node(nil, X, T2), T1, node(T1, X, T2)) -> tappend_out_gga(node(nil, X, T2), T1, node(T1, X, T2)) 5.15/2.20 tappend_in_gga(node(T1, X, nil), T2, node(T1, X, T2)) -> tappend_out_gga(node(T1, X, nil), T2, node(T1, X, T2)) 5.15/2.20 tappend_in_gga(node(T1, X, T2), T3, node(U, X, T2)) -> U7_gga(T1, X, T2, T3, U, tappend_in_gga(T1, T3, U)) 5.15/2.20 tappend_in_gga(node(T1, X, T2), T3, node(T1, X, U)) -> U8_gga(T1, X, T2, T3, U, tappend_in_gga(T2, T3, U)) 5.15/2.20 U8_gga(T1, X, T2, T3, U, tappend_out_gga(T2, T3, U)) -> tappend_out_gga(node(T1, X, T2), T3, node(T1, X, U)) 5.15/2.20 U7_gga(T1, X, T2, T3, U, tappend_out_gga(T1, T3, U)) -> tappend_out_gga(node(T1, X, T2), T3, node(U, X, T2)) 5.15/2.20 U3_gaa(L, X, Last, tappend_out_gga(L, node(nil, X, nil), LX)) -> U4_gaa(L, X, Last, tlast_in_ag(Last, LX)) 5.15/2.20 tlast_in_ag(X, node(nil, X, nil)) -> tlast_out_ag(X, node(nil, X, nil)) 5.15/2.20 tlast_in_ag(X, node(L, H, R)) -> U5_ag(X, L, H, R, tlast_in_ag(X, L)) 5.15/2.20 tlast_in_ag(X, node(L, H, R)) -> U6_ag(X, L, H, R, tlast_in_ag(X, R)) 5.15/2.20 U6_ag(X, L, H, R, tlast_out_ag(X, R)) -> tlast_out_ag(X, node(L, H, R)) 5.15/2.20 U5_ag(X, L, H, R, tlast_out_ag(X, L)) -> tlast_out_ag(X, node(L, H, R)) 5.15/2.20 U4_gaa(L, X, Last, tlast_out_ag(Last, LX)) -> tapplast_out_gaa(L, X, Last) 5.15/2.20 U2_gaa(A, B, C, tapplast_out_gaa(T, B, C)) -> goal_out_gaa(A, B, C) 5.15/2.20 5.15/2.20 The argument filtering Pi contains the following mapping: 5.15/2.20 goal_in_gaa(x1, x2, x3) = goal_in_gaa(x1) 5.15/2.20 5.15/2.20 U1_gaa(x1, x2, x3, x4) = U1_gaa(x4) 5.15/2.20 5.15/2.20 s2t_in_ga(x1, x2) = s2t_in_ga(x1) 5.15/2.20 5.15/2.20 s(x1) = s(x1) 5.15/2.20 5.15/2.20 U9_ga(x1, x2, x3, x4) = U9_ga(x4) 5.15/2.20 5.15/2.20 U10_ga(x1, x2, x3, x4) = U10_ga(x4) 5.15/2.20 5.15/2.20 U11_ga(x1, x2, x3, x4) = U11_ga(x4) 5.15/2.20 5.15/2.20 s2t_out_ga(x1, x2) = s2t_out_ga(x2) 5.15/2.20 5.15/2.20 node(x1, x2, x3) = node(x1, x3) 5.15/2.20 5.15/2.20 0 = 0 5.15/2.20 5.15/2.20 U2_gaa(x1, x2, x3, x4) = U2_gaa(x4) 5.15/2.20 5.15/2.20 tapplast_in_gaa(x1, x2, x3) = tapplast_in_gaa(x1) 5.15/2.20 5.15/2.20 U3_gaa(x1, x2, x3, x4) = U3_gaa(x4) 5.15/2.20 5.15/2.20 tappend_in_gga(x1, x2, x3) = tappend_in_gga(x1, x2) 5.15/2.20 5.15/2.20 nil = nil 5.15/2.20 5.15/2.20 tappend_out_gga(x1, x2, x3) = tappend_out_gga(x3) 5.15/2.20 5.15/2.20 U7_gga(x1, x2, x3, x4, x5, x6) = U7_gga(x3, x6) 5.15/2.20 5.15/2.20 U8_gga(x1, x2, x3, x4, x5, x6) = U8_gga(x1, x6) 5.15/2.20 5.15/2.20 U4_gaa(x1, x2, x3, x4) = U4_gaa(x4) 5.15/2.20 5.15/2.20 tlast_in_ag(x1, x2) = tlast_in_ag(x2) 5.15/2.20 5.15/2.20 tlast_out_ag(x1, x2) = tlast_out_ag 5.15/2.20 5.15/2.20 U5_ag(x1, x2, x3, x4, x5) = U5_ag(x5) 5.15/2.20 5.15/2.20 U6_ag(x1, x2, x3, x4, x5) = U6_ag(x5) 5.15/2.20 5.15/2.20 tapplast_out_gaa(x1, x2, x3) = tapplast_out_gaa 5.15/2.20 5.15/2.20 goal_out_gaa(x1, x2, x3) = goal_out_gaa 5.15/2.20 5.15/2.20 5.15/2.20 5.15/2.20 5.15/2.20 5.15/2.20 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 5.15/2.20 5.15/2.20 5.15/2.20 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (2) 5.15/2.20 Obligation: 5.15/2.20 Pi-finite rewrite system: 5.15/2.20 The TRS R consists of the following rules: 5.15/2.20 5.15/2.20 goal_in_gaa(A, B, C) -> U1_gaa(A, B, C, s2t_in_ga(A, T)) 5.15/2.20 s2t_in_ga(s(X), node(T, Y, T)) -> U9_ga(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(nil, Y, T)) -> U10_ga(X, Y, T, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(T, Y, nil)) -> U11_ga(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(nil, Y, nil)) -> s2t_out_ga(s(X), node(nil, Y, nil)) 5.15/2.20 s2t_in_ga(0, nil) -> s2t_out_ga(0, nil) 5.15/2.20 U11_ga(X, T, Y, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(T, Y, nil)) 5.15/2.20 U10_ga(X, Y, T, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(nil, Y, T)) 5.15/2.20 U9_ga(X, T, Y, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(T, Y, T)) 5.15/2.20 U1_gaa(A, B, C, s2t_out_ga(A, T)) -> U2_gaa(A, B, C, tapplast_in_gaa(T, B, C)) 5.15/2.20 tapplast_in_gaa(L, X, Last) -> U3_gaa(L, X, Last, tappend_in_gga(L, node(nil, X, nil), LX)) 5.15/2.20 tappend_in_gga(nil, T, T) -> tappend_out_gga(nil, T, T) 5.15/2.20 tappend_in_gga(node(nil, X, T2), T1, node(T1, X, T2)) -> tappend_out_gga(node(nil, X, T2), T1, node(T1, X, T2)) 5.15/2.20 tappend_in_gga(node(T1, X, nil), T2, node(T1, X, T2)) -> tappend_out_gga(node(T1, X, nil), T2, node(T1, X, T2)) 5.15/2.20 tappend_in_gga(node(T1, X, T2), T3, node(U, X, T2)) -> U7_gga(T1, X, T2, T3, U, tappend_in_gga(T1, T3, U)) 5.15/2.20 tappend_in_gga(node(T1, X, T2), T3, node(T1, X, U)) -> U8_gga(T1, X, T2, T3, U, tappend_in_gga(T2, T3, U)) 5.15/2.20 U8_gga(T1, X, T2, T3, U, tappend_out_gga(T2, T3, U)) -> tappend_out_gga(node(T1, X, T2), T3, node(T1, X, U)) 5.15/2.20 U7_gga(T1, X, T2, T3, U, tappend_out_gga(T1, T3, U)) -> tappend_out_gga(node(T1, X, T2), T3, node(U, X, T2)) 5.15/2.20 U3_gaa(L, X, Last, tappend_out_gga(L, node(nil, X, nil), LX)) -> U4_gaa(L, X, Last, tlast_in_ag(Last, LX)) 5.15/2.20 tlast_in_ag(X, node(nil, X, nil)) -> tlast_out_ag(X, node(nil, X, nil)) 5.15/2.20 tlast_in_ag(X, node(L, H, R)) -> U5_ag(X, L, H, R, tlast_in_ag(X, L)) 5.15/2.20 tlast_in_ag(X, node(L, H, R)) -> U6_ag(X, L, H, R, tlast_in_ag(X, R)) 5.15/2.20 U6_ag(X, L, H, R, tlast_out_ag(X, R)) -> tlast_out_ag(X, node(L, H, R)) 5.15/2.20 U5_ag(X, L, H, R, tlast_out_ag(X, L)) -> tlast_out_ag(X, node(L, H, R)) 5.15/2.20 U4_gaa(L, X, Last, tlast_out_ag(Last, LX)) -> tapplast_out_gaa(L, X, Last) 5.15/2.20 U2_gaa(A, B, C, tapplast_out_gaa(T, B, C)) -> goal_out_gaa(A, B, C) 5.15/2.20 5.15/2.20 The argument filtering Pi contains the following mapping: 5.15/2.20 goal_in_gaa(x1, x2, x3) = goal_in_gaa(x1) 5.15/2.20 5.15/2.20 U1_gaa(x1, x2, x3, x4) = U1_gaa(x4) 5.15/2.20 5.15/2.20 s2t_in_ga(x1, x2) = s2t_in_ga(x1) 5.15/2.20 5.15/2.20 s(x1) = s(x1) 5.15/2.20 5.15/2.20 U9_ga(x1, x2, x3, x4) = U9_ga(x4) 5.15/2.20 5.15/2.20 U10_ga(x1, x2, x3, x4) = U10_ga(x4) 5.15/2.20 5.15/2.20 U11_ga(x1, x2, x3, x4) = U11_ga(x4) 5.15/2.20 5.15/2.20 s2t_out_ga(x1, x2) = s2t_out_ga(x2) 5.15/2.20 5.15/2.20 node(x1, x2, x3) = node(x1, x3) 5.15/2.20 5.15/2.20 0 = 0 5.15/2.20 5.15/2.20 U2_gaa(x1, x2, x3, x4) = U2_gaa(x4) 5.15/2.20 5.15/2.20 tapplast_in_gaa(x1, x2, x3) = tapplast_in_gaa(x1) 5.15/2.20 5.15/2.20 U3_gaa(x1, x2, x3, x4) = U3_gaa(x4) 5.15/2.20 5.15/2.20 tappend_in_gga(x1, x2, x3) = tappend_in_gga(x1, x2) 5.15/2.20 5.15/2.20 nil = nil 5.15/2.20 5.15/2.20 tappend_out_gga(x1, x2, x3) = tappend_out_gga(x3) 5.15/2.20 5.15/2.20 U7_gga(x1, x2, x3, x4, x5, x6) = U7_gga(x3, x6) 5.15/2.20 5.15/2.20 U8_gga(x1, x2, x3, x4, x5, x6) = U8_gga(x1, x6) 5.15/2.20 5.15/2.20 U4_gaa(x1, x2, x3, x4) = U4_gaa(x4) 5.15/2.20 5.15/2.20 tlast_in_ag(x1, x2) = tlast_in_ag(x2) 5.15/2.20 5.15/2.20 tlast_out_ag(x1, x2) = tlast_out_ag 5.15/2.20 5.15/2.20 U5_ag(x1, x2, x3, x4, x5) = U5_ag(x5) 5.15/2.20 5.15/2.20 U6_ag(x1, x2, x3, x4, x5) = U6_ag(x5) 5.15/2.20 5.15/2.20 tapplast_out_gaa(x1, x2, x3) = tapplast_out_gaa 5.15/2.20 5.15/2.20 goal_out_gaa(x1, x2, x3) = goal_out_gaa 5.15/2.20 5.15/2.20 5.15/2.20 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (3) DependencyPairsProof (EQUIVALENT) 5.15/2.20 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 5.15/2.20 Pi DP problem: 5.15/2.20 The TRS P consists of the following rules: 5.15/2.20 5.15/2.20 GOAL_IN_GAA(A, B, C) -> U1_GAA(A, B, C, s2t_in_ga(A, T)) 5.15/2.20 GOAL_IN_GAA(A, B, C) -> S2T_IN_GA(A, T) 5.15/2.20 S2T_IN_GA(s(X), node(T, Y, T)) -> U9_GA(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 S2T_IN_GA(s(X), node(T, Y, T)) -> S2T_IN_GA(X, T) 5.15/2.20 S2T_IN_GA(s(X), node(nil, Y, T)) -> U10_GA(X, Y, T, s2t_in_ga(X, T)) 5.15/2.20 S2T_IN_GA(s(X), node(nil, Y, T)) -> S2T_IN_GA(X, T) 5.15/2.20 S2T_IN_GA(s(X), node(T, Y, nil)) -> U11_GA(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 S2T_IN_GA(s(X), node(T, Y, nil)) -> S2T_IN_GA(X, T) 5.15/2.20 U1_GAA(A, B, C, s2t_out_ga(A, T)) -> U2_GAA(A, B, C, tapplast_in_gaa(T, B, C)) 5.15/2.20 U1_GAA(A, B, C, s2t_out_ga(A, T)) -> TAPPLAST_IN_GAA(T, B, C) 5.15/2.20 TAPPLAST_IN_GAA(L, X, Last) -> U3_GAA(L, X, Last, tappend_in_gga(L, node(nil, X, nil), LX)) 5.15/2.20 TAPPLAST_IN_GAA(L, X, Last) -> TAPPEND_IN_GGA(L, node(nil, X, nil), LX) 5.15/2.20 TAPPEND_IN_GGA(node(T1, X, T2), T3, node(U, X, T2)) -> U7_GGA(T1, X, T2, T3, U, tappend_in_gga(T1, T3, U)) 5.15/2.20 TAPPEND_IN_GGA(node(T1, X, T2), T3, node(U, X, T2)) -> TAPPEND_IN_GGA(T1, T3, U) 5.15/2.20 TAPPEND_IN_GGA(node(T1, X, T2), T3, node(T1, X, U)) -> U8_GGA(T1, X, T2, T3, U, tappend_in_gga(T2, T3, U)) 5.15/2.20 TAPPEND_IN_GGA(node(T1, X, T2), T3, node(T1, X, U)) -> TAPPEND_IN_GGA(T2, T3, U) 5.15/2.20 U3_GAA(L, X, Last, tappend_out_gga(L, node(nil, X, nil), LX)) -> U4_GAA(L, X, Last, tlast_in_ag(Last, LX)) 5.15/2.20 U3_GAA(L, X, Last, tappend_out_gga(L, node(nil, X, nil), LX)) -> TLAST_IN_AG(Last, LX) 5.15/2.20 TLAST_IN_AG(X, node(L, H, R)) -> U5_AG(X, L, H, R, tlast_in_ag(X, L)) 5.15/2.20 TLAST_IN_AG(X, node(L, H, R)) -> TLAST_IN_AG(X, L) 5.15/2.20 TLAST_IN_AG(X, node(L, H, R)) -> U6_AG(X, L, H, R, tlast_in_ag(X, R)) 5.15/2.20 TLAST_IN_AG(X, node(L, H, R)) -> TLAST_IN_AG(X, R) 5.15/2.20 5.15/2.20 The TRS R consists of the following rules: 5.15/2.20 5.15/2.20 goal_in_gaa(A, B, C) -> U1_gaa(A, B, C, s2t_in_ga(A, T)) 5.15/2.20 s2t_in_ga(s(X), node(T, Y, T)) -> U9_ga(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(nil, Y, T)) -> U10_ga(X, Y, T, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(T, Y, nil)) -> U11_ga(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(nil, Y, nil)) -> s2t_out_ga(s(X), node(nil, Y, nil)) 5.15/2.20 s2t_in_ga(0, nil) -> s2t_out_ga(0, nil) 5.15/2.20 U11_ga(X, T, Y, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(T, Y, nil)) 5.15/2.20 U10_ga(X, Y, T, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(nil, Y, T)) 5.15/2.20 U9_ga(X, T, Y, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(T, Y, T)) 5.15/2.20 U1_gaa(A, B, C, s2t_out_ga(A, T)) -> U2_gaa(A, B, C, tapplast_in_gaa(T, B, C)) 5.15/2.20 tapplast_in_gaa(L, X, Last) -> U3_gaa(L, X, Last, tappend_in_gga(L, node(nil, X, nil), LX)) 5.15/2.20 tappend_in_gga(nil, T, T) -> tappend_out_gga(nil, T, T) 5.15/2.20 tappend_in_gga(node(nil, X, T2), T1, node(T1, X, T2)) -> tappend_out_gga(node(nil, X, T2), T1, node(T1, X, T2)) 5.15/2.20 tappend_in_gga(node(T1, X, nil), T2, node(T1, X, T2)) -> tappend_out_gga(node(T1, X, nil), T2, node(T1, X, T2)) 5.15/2.20 tappend_in_gga(node(T1, X, T2), T3, node(U, X, T2)) -> U7_gga(T1, X, T2, T3, U, tappend_in_gga(T1, T3, U)) 5.15/2.20 tappend_in_gga(node(T1, X, T2), T3, node(T1, X, U)) -> U8_gga(T1, X, T2, T3, U, tappend_in_gga(T2, T3, U)) 5.15/2.20 U8_gga(T1, X, T2, T3, U, tappend_out_gga(T2, T3, U)) -> tappend_out_gga(node(T1, X, T2), T3, node(T1, X, U)) 5.15/2.20 U7_gga(T1, X, T2, T3, U, tappend_out_gga(T1, T3, U)) -> tappend_out_gga(node(T1, X, T2), T3, node(U, X, T2)) 5.15/2.20 U3_gaa(L, X, Last, tappend_out_gga(L, node(nil, X, nil), LX)) -> U4_gaa(L, X, Last, tlast_in_ag(Last, LX)) 5.15/2.20 tlast_in_ag(X, node(nil, X, nil)) -> tlast_out_ag(X, node(nil, X, nil)) 5.15/2.20 tlast_in_ag(X, node(L, H, R)) -> U5_ag(X, L, H, R, tlast_in_ag(X, L)) 5.15/2.20 tlast_in_ag(X, node(L, H, R)) -> U6_ag(X, L, H, R, tlast_in_ag(X, R)) 5.15/2.20 U6_ag(X, L, H, R, tlast_out_ag(X, R)) -> tlast_out_ag(X, node(L, H, R)) 5.15/2.20 U5_ag(X, L, H, R, tlast_out_ag(X, L)) -> tlast_out_ag(X, node(L, H, R)) 5.15/2.20 U4_gaa(L, X, Last, tlast_out_ag(Last, LX)) -> tapplast_out_gaa(L, X, Last) 5.15/2.20 U2_gaa(A, B, C, tapplast_out_gaa(T, B, C)) -> goal_out_gaa(A, B, C) 5.15/2.20 5.15/2.20 The argument filtering Pi contains the following mapping: 5.15/2.20 goal_in_gaa(x1, x2, x3) = goal_in_gaa(x1) 5.15/2.20 5.15/2.20 U1_gaa(x1, x2, x3, x4) = U1_gaa(x4) 5.15/2.20 5.15/2.20 s2t_in_ga(x1, x2) = s2t_in_ga(x1) 5.15/2.20 5.15/2.20 s(x1) = s(x1) 5.15/2.20 5.15/2.20 U9_ga(x1, x2, x3, x4) = U9_ga(x4) 5.15/2.20 5.15/2.20 U10_ga(x1, x2, x3, x4) = U10_ga(x4) 5.15/2.20 5.15/2.20 U11_ga(x1, x2, x3, x4) = U11_ga(x4) 5.15/2.20 5.15/2.20 s2t_out_ga(x1, x2) = s2t_out_ga(x2) 5.15/2.20 5.15/2.20 node(x1, x2, x3) = node(x1, x3) 5.15/2.20 5.15/2.20 0 = 0 5.15/2.20 5.15/2.20 U2_gaa(x1, x2, x3, x4) = U2_gaa(x4) 5.15/2.20 5.15/2.20 tapplast_in_gaa(x1, x2, x3) = tapplast_in_gaa(x1) 5.15/2.20 5.15/2.20 U3_gaa(x1, x2, x3, x4) = U3_gaa(x4) 5.15/2.20 5.15/2.20 tappend_in_gga(x1, x2, x3) = tappend_in_gga(x1, x2) 5.15/2.20 5.15/2.20 nil = nil 5.15/2.20 5.15/2.20 tappend_out_gga(x1, x2, x3) = tappend_out_gga(x3) 5.15/2.20 5.15/2.20 U7_gga(x1, x2, x3, x4, x5, x6) = U7_gga(x3, x6) 5.15/2.20 5.15/2.20 U8_gga(x1, x2, x3, x4, x5, x6) = U8_gga(x1, x6) 5.15/2.20 5.15/2.20 U4_gaa(x1, x2, x3, x4) = U4_gaa(x4) 5.15/2.20 5.15/2.20 tlast_in_ag(x1, x2) = tlast_in_ag(x2) 5.15/2.20 5.15/2.20 tlast_out_ag(x1, x2) = tlast_out_ag 5.15/2.20 5.15/2.20 U5_ag(x1, x2, x3, x4, x5) = U5_ag(x5) 5.15/2.20 5.15/2.20 U6_ag(x1, x2, x3, x4, x5) = U6_ag(x5) 5.15/2.20 5.15/2.20 tapplast_out_gaa(x1, x2, x3) = tapplast_out_gaa 5.15/2.20 5.15/2.20 goal_out_gaa(x1, x2, x3) = goal_out_gaa 5.15/2.20 5.15/2.20 GOAL_IN_GAA(x1, x2, x3) = GOAL_IN_GAA(x1) 5.15/2.20 5.15/2.20 U1_GAA(x1, x2, x3, x4) = U1_GAA(x4) 5.15/2.20 5.15/2.20 S2T_IN_GA(x1, x2) = S2T_IN_GA(x1) 5.15/2.20 5.15/2.20 U9_GA(x1, x2, x3, x4) = U9_GA(x4) 5.15/2.20 5.15/2.20 U10_GA(x1, x2, x3, x4) = U10_GA(x4) 5.15/2.20 5.15/2.20 U11_GA(x1, x2, x3, x4) = U11_GA(x4) 5.15/2.20 5.15/2.20 U2_GAA(x1, x2, x3, x4) = U2_GAA(x4) 5.15/2.20 5.15/2.20 TAPPLAST_IN_GAA(x1, x2, x3) = TAPPLAST_IN_GAA(x1) 5.15/2.20 5.15/2.20 U3_GAA(x1, x2, x3, x4) = U3_GAA(x4) 5.15/2.20 5.15/2.20 TAPPEND_IN_GGA(x1, x2, x3) = TAPPEND_IN_GGA(x1, x2) 5.15/2.20 5.15/2.20 U7_GGA(x1, x2, x3, x4, x5, x6) = U7_GGA(x3, x6) 5.15/2.20 5.15/2.20 U8_GGA(x1, x2, x3, x4, x5, x6) = U8_GGA(x1, x6) 5.15/2.20 5.15/2.20 U4_GAA(x1, x2, x3, x4) = U4_GAA(x4) 5.15/2.20 5.15/2.20 TLAST_IN_AG(x1, x2) = TLAST_IN_AG(x2) 5.15/2.20 5.15/2.20 U5_AG(x1, x2, x3, x4, x5) = U5_AG(x5) 5.15/2.20 5.15/2.20 U6_AG(x1, x2, x3, x4, x5) = U6_AG(x5) 5.15/2.20 5.15/2.20 5.15/2.20 We have to consider all (P,R,Pi)-chains 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (4) 5.15/2.20 Obligation: 5.15/2.20 Pi DP problem: 5.15/2.20 The TRS P consists of the following rules: 5.15/2.20 5.15/2.20 GOAL_IN_GAA(A, B, C) -> U1_GAA(A, B, C, s2t_in_ga(A, T)) 5.15/2.20 GOAL_IN_GAA(A, B, C) -> S2T_IN_GA(A, T) 5.15/2.20 S2T_IN_GA(s(X), node(T, Y, T)) -> U9_GA(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 S2T_IN_GA(s(X), node(T, Y, T)) -> S2T_IN_GA(X, T) 5.15/2.20 S2T_IN_GA(s(X), node(nil, Y, T)) -> U10_GA(X, Y, T, s2t_in_ga(X, T)) 5.15/2.20 S2T_IN_GA(s(X), node(nil, Y, T)) -> S2T_IN_GA(X, T) 5.15/2.20 S2T_IN_GA(s(X), node(T, Y, nil)) -> U11_GA(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 S2T_IN_GA(s(X), node(T, Y, nil)) -> S2T_IN_GA(X, T) 5.15/2.20 U1_GAA(A, B, C, s2t_out_ga(A, T)) -> U2_GAA(A, B, C, tapplast_in_gaa(T, B, C)) 5.15/2.20 U1_GAA(A, B, C, s2t_out_ga(A, T)) -> TAPPLAST_IN_GAA(T, B, C) 5.15/2.20 TAPPLAST_IN_GAA(L, X, Last) -> U3_GAA(L, X, Last, tappend_in_gga(L, node(nil, X, nil), LX)) 5.15/2.20 TAPPLAST_IN_GAA(L, X, Last) -> TAPPEND_IN_GGA(L, node(nil, X, nil), LX) 5.15/2.20 TAPPEND_IN_GGA(node(T1, X, T2), T3, node(U, X, T2)) -> U7_GGA(T1, X, T2, T3, U, tappend_in_gga(T1, T3, U)) 5.15/2.20 TAPPEND_IN_GGA(node(T1, X, T2), T3, node(U, X, T2)) -> TAPPEND_IN_GGA(T1, T3, U) 5.15/2.20 TAPPEND_IN_GGA(node(T1, X, T2), T3, node(T1, X, U)) -> U8_GGA(T1, X, T2, T3, U, tappend_in_gga(T2, T3, U)) 5.15/2.20 TAPPEND_IN_GGA(node(T1, X, T2), T3, node(T1, X, U)) -> TAPPEND_IN_GGA(T2, T3, U) 5.15/2.20 U3_GAA(L, X, Last, tappend_out_gga(L, node(nil, X, nil), LX)) -> U4_GAA(L, X, Last, tlast_in_ag(Last, LX)) 5.15/2.20 U3_GAA(L, X, Last, tappend_out_gga(L, node(nil, X, nil), LX)) -> TLAST_IN_AG(Last, LX) 5.15/2.20 TLAST_IN_AG(X, node(L, H, R)) -> U5_AG(X, L, H, R, tlast_in_ag(X, L)) 5.15/2.20 TLAST_IN_AG(X, node(L, H, R)) -> TLAST_IN_AG(X, L) 5.15/2.20 TLAST_IN_AG(X, node(L, H, R)) -> U6_AG(X, L, H, R, tlast_in_ag(X, R)) 5.15/2.20 TLAST_IN_AG(X, node(L, H, R)) -> TLAST_IN_AG(X, R) 5.15/2.20 5.15/2.20 The TRS R consists of the following rules: 5.15/2.20 5.15/2.20 goal_in_gaa(A, B, C) -> U1_gaa(A, B, C, s2t_in_ga(A, T)) 5.15/2.20 s2t_in_ga(s(X), node(T, Y, T)) -> U9_ga(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(nil, Y, T)) -> U10_ga(X, Y, T, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(T, Y, nil)) -> U11_ga(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(nil, Y, nil)) -> s2t_out_ga(s(X), node(nil, Y, nil)) 5.15/2.20 s2t_in_ga(0, nil) -> s2t_out_ga(0, nil) 5.15/2.20 U11_ga(X, T, Y, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(T, Y, nil)) 5.15/2.20 U10_ga(X, Y, T, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(nil, Y, T)) 5.15/2.20 U9_ga(X, T, Y, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(T, Y, T)) 5.15/2.20 U1_gaa(A, B, C, s2t_out_ga(A, T)) -> U2_gaa(A, B, C, tapplast_in_gaa(T, B, C)) 5.15/2.20 tapplast_in_gaa(L, X, Last) -> U3_gaa(L, X, Last, tappend_in_gga(L, node(nil, X, nil), LX)) 5.15/2.20 tappend_in_gga(nil, T, T) -> tappend_out_gga(nil, T, T) 5.15/2.20 tappend_in_gga(node(nil, X, T2), T1, node(T1, X, T2)) -> tappend_out_gga(node(nil, X, T2), T1, node(T1, X, T2)) 5.15/2.20 tappend_in_gga(node(T1, X, nil), T2, node(T1, X, T2)) -> tappend_out_gga(node(T1, X, nil), T2, node(T1, X, T2)) 5.15/2.20 tappend_in_gga(node(T1, X, T2), T3, node(U, X, T2)) -> U7_gga(T1, X, T2, T3, U, tappend_in_gga(T1, T3, U)) 5.15/2.20 tappend_in_gga(node(T1, X, T2), T3, node(T1, X, U)) -> U8_gga(T1, X, T2, T3, U, tappend_in_gga(T2, T3, U)) 5.15/2.20 U8_gga(T1, X, T2, T3, U, tappend_out_gga(T2, T3, U)) -> tappend_out_gga(node(T1, X, T2), T3, node(T1, X, U)) 5.15/2.20 U7_gga(T1, X, T2, T3, U, tappend_out_gga(T1, T3, U)) -> tappend_out_gga(node(T1, X, T2), T3, node(U, X, T2)) 5.15/2.20 U3_gaa(L, X, Last, tappend_out_gga(L, node(nil, X, nil), LX)) -> U4_gaa(L, X, Last, tlast_in_ag(Last, LX)) 5.15/2.20 tlast_in_ag(X, node(nil, X, nil)) -> tlast_out_ag(X, node(nil, X, nil)) 5.15/2.20 tlast_in_ag(X, node(L, H, R)) -> U5_ag(X, L, H, R, tlast_in_ag(X, L)) 5.15/2.20 tlast_in_ag(X, node(L, H, R)) -> U6_ag(X, L, H, R, tlast_in_ag(X, R)) 5.15/2.20 U6_ag(X, L, H, R, tlast_out_ag(X, R)) -> tlast_out_ag(X, node(L, H, R)) 5.15/2.20 U5_ag(X, L, H, R, tlast_out_ag(X, L)) -> tlast_out_ag(X, node(L, H, R)) 5.15/2.20 U4_gaa(L, X, Last, tlast_out_ag(Last, LX)) -> tapplast_out_gaa(L, X, Last) 5.15/2.20 U2_gaa(A, B, C, tapplast_out_gaa(T, B, C)) -> goal_out_gaa(A, B, C) 5.15/2.20 5.15/2.20 The argument filtering Pi contains the following mapping: 5.15/2.20 goal_in_gaa(x1, x2, x3) = goal_in_gaa(x1) 5.15/2.20 5.15/2.20 U1_gaa(x1, x2, x3, x4) = U1_gaa(x4) 5.15/2.20 5.15/2.20 s2t_in_ga(x1, x2) = s2t_in_ga(x1) 5.15/2.20 5.15/2.20 s(x1) = s(x1) 5.15/2.20 5.15/2.20 U9_ga(x1, x2, x3, x4) = U9_ga(x4) 5.15/2.20 5.15/2.20 U10_ga(x1, x2, x3, x4) = U10_ga(x4) 5.15/2.20 5.15/2.20 U11_ga(x1, x2, x3, x4) = U11_ga(x4) 5.15/2.20 5.15/2.20 s2t_out_ga(x1, x2) = s2t_out_ga(x2) 5.15/2.20 5.15/2.20 node(x1, x2, x3) = node(x1, x3) 5.15/2.20 5.15/2.20 0 = 0 5.15/2.20 5.15/2.20 U2_gaa(x1, x2, x3, x4) = U2_gaa(x4) 5.15/2.20 5.15/2.20 tapplast_in_gaa(x1, x2, x3) = tapplast_in_gaa(x1) 5.15/2.20 5.15/2.20 U3_gaa(x1, x2, x3, x4) = U3_gaa(x4) 5.15/2.20 5.15/2.20 tappend_in_gga(x1, x2, x3) = tappend_in_gga(x1, x2) 5.15/2.20 5.15/2.20 nil = nil 5.15/2.20 5.15/2.20 tappend_out_gga(x1, x2, x3) = tappend_out_gga(x3) 5.15/2.20 5.15/2.20 U7_gga(x1, x2, x3, x4, x5, x6) = U7_gga(x3, x6) 5.15/2.20 5.15/2.20 U8_gga(x1, x2, x3, x4, x5, x6) = U8_gga(x1, x6) 5.15/2.20 5.15/2.20 U4_gaa(x1, x2, x3, x4) = U4_gaa(x4) 5.15/2.20 5.15/2.20 tlast_in_ag(x1, x2) = tlast_in_ag(x2) 5.15/2.20 5.15/2.20 tlast_out_ag(x1, x2) = tlast_out_ag 5.15/2.20 5.15/2.20 U5_ag(x1, x2, x3, x4, x5) = U5_ag(x5) 5.15/2.20 5.15/2.20 U6_ag(x1, x2, x3, x4, x5) = U6_ag(x5) 5.15/2.20 5.15/2.20 tapplast_out_gaa(x1, x2, x3) = tapplast_out_gaa 5.15/2.20 5.15/2.20 goal_out_gaa(x1, x2, x3) = goal_out_gaa 5.15/2.20 5.15/2.20 GOAL_IN_GAA(x1, x2, x3) = GOAL_IN_GAA(x1) 5.15/2.20 5.15/2.20 U1_GAA(x1, x2, x3, x4) = U1_GAA(x4) 5.15/2.20 5.15/2.20 S2T_IN_GA(x1, x2) = S2T_IN_GA(x1) 5.15/2.20 5.15/2.20 U9_GA(x1, x2, x3, x4) = U9_GA(x4) 5.15/2.20 5.15/2.20 U10_GA(x1, x2, x3, x4) = U10_GA(x4) 5.15/2.20 5.15/2.20 U11_GA(x1, x2, x3, x4) = U11_GA(x4) 5.15/2.20 5.15/2.20 U2_GAA(x1, x2, x3, x4) = U2_GAA(x4) 5.15/2.20 5.15/2.20 TAPPLAST_IN_GAA(x1, x2, x3) = TAPPLAST_IN_GAA(x1) 5.15/2.20 5.15/2.20 U3_GAA(x1, x2, x3, x4) = U3_GAA(x4) 5.15/2.20 5.15/2.20 TAPPEND_IN_GGA(x1, x2, x3) = TAPPEND_IN_GGA(x1, x2) 5.15/2.20 5.15/2.20 U7_GGA(x1, x2, x3, x4, x5, x6) = U7_GGA(x3, x6) 5.15/2.20 5.15/2.20 U8_GGA(x1, x2, x3, x4, x5, x6) = U8_GGA(x1, x6) 5.15/2.20 5.15/2.20 U4_GAA(x1, x2, x3, x4) = U4_GAA(x4) 5.15/2.20 5.15/2.20 TLAST_IN_AG(x1, x2) = TLAST_IN_AG(x2) 5.15/2.20 5.15/2.20 U5_AG(x1, x2, x3, x4, x5) = U5_AG(x5) 5.15/2.20 5.15/2.20 U6_AG(x1, x2, x3, x4, x5) = U6_AG(x5) 5.15/2.20 5.15/2.20 5.15/2.20 We have to consider all (P,R,Pi)-chains 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (5) DependencyGraphProof (EQUIVALENT) 5.15/2.20 The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 15 less nodes. 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (6) 5.15/2.20 Complex Obligation (AND) 5.15/2.20 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (7) 5.15/2.20 Obligation: 5.15/2.20 Pi DP problem: 5.15/2.20 The TRS P consists of the following rules: 5.15/2.20 5.15/2.20 TLAST_IN_AG(X, node(L, H, R)) -> TLAST_IN_AG(X, R) 5.15/2.20 TLAST_IN_AG(X, node(L, H, R)) -> TLAST_IN_AG(X, L) 5.15/2.20 5.15/2.20 The TRS R consists of the following rules: 5.15/2.20 5.15/2.20 goal_in_gaa(A, B, C) -> U1_gaa(A, B, C, s2t_in_ga(A, T)) 5.15/2.20 s2t_in_ga(s(X), node(T, Y, T)) -> U9_ga(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(nil, Y, T)) -> U10_ga(X, Y, T, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(T, Y, nil)) -> U11_ga(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(nil, Y, nil)) -> s2t_out_ga(s(X), node(nil, Y, nil)) 5.15/2.20 s2t_in_ga(0, nil) -> s2t_out_ga(0, nil) 5.15/2.20 U11_ga(X, T, Y, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(T, Y, nil)) 5.15/2.20 U10_ga(X, Y, T, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(nil, Y, T)) 5.15/2.20 U9_ga(X, T, Y, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(T, Y, T)) 5.15/2.20 U1_gaa(A, B, C, s2t_out_ga(A, T)) -> U2_gaa(A, B, C, tapplast_in_gaa(T, B, C)) 5.15/2.20 tapplast_in_gaa(L, X, Last) -> U3_gaa(L, X, Last, tappend_in_gga(L, node(nil, X, nil), LX)) 5.15/2.20 tappend_in_gga(nil, T, T) -> tappend_out_gga(nil, T, T) 5.15/2.20 tappend_in_gga(node(nil, X, T2), T1, node(T1, X, T2)) -> tappend_out_gga(node(nil, X, T2), T1, node(T1, X, T2)) 5.15/2.20 tappend_in_gga(node(T1, X, nil), T2, node(T1, X, T2)) -> tappend_out_gga(node(T1, X, nil), T2, node(T1, X, T2)) 5.15/2.20 tappend_in_gga(node(T1, X, T2), T3, node(U, X, T2)) -> U7_gga(T1, X, T2, T3, U, tappend_in_gga(T1, T3, U)) 5.15/2.20 tappend_in_gga(node(T1, X, T2), T3, node(T1, X, U)) -> U8_gga(T1, X, T2, T3, U, tappend_in_gga(T2, T3, U)) 5.15/2.20 U8_gga(T1, X, T2, T3, U, tappend_out_gga(T2, T3, U)) -> tappend_out_gga(node(T1, X, T2), T3, node(T1, X, U)) 5.15/2.20 U7_gga(T1, X, T2, T3, U, tappend_out_gga(T1, T3, U)) -> tappend_out_gga(node(T1, X, T2), T3, node(U, X, T2)) 5.15/2.20 U3_gaa(L, X, Last, tappend_out_gga(L, node(nil, X, nil), LX)) -> U4_gaa(L, X, Last, tlast_in_ag(Last, LX)) 5.15/2.20 tlast_in_ag(X, node(nil, X, nil)) -> tlast_out_ag(X, node(nil, X, nil)) 5.15/2.20 tlast_in_ag(X, node(L, H, R)) -> U5_ag(X, L, H, R, tlast_in_ag(X, L)) 5.15/2.20 tlast_in_ag(X, node(L, H, R)) -> U6_ag(X, L, H, R, tlast_in_ag(X, R)) 5.15/2.20 U6_ag(X, L, H, R, tlast_out_ag(X, R)) -> tlast_out_ag(X, node(L, H, R)) 5.15/2.20 U5_ag(X, L, H, R, tlast_out_ag(X, L)) -> tlast_out_ag(X, node(L, H, R)) 5.15/2.20 U4_gaa(L, X, Last, tlast_out_ag(Last, LX)) -> tapplast_out_gaa(L, X, Last) 5.15/2.20 U2_gaa(A, B, C, tapplast_out_gaa(T, B, C)) -> goal_out_gaa(A, B, C) 5.15/2.20 5.15/2.20 The argument filtering Pi contains the following mapping: 5.15/2.20 goal_in_gaa(x1, x2, x3) = goal_in_gaa(x1) 5.15/2.20 5.15/2.20 U1_gaa(x1, x2, x3, x4) = U1_gaa(x4) 5.15/2.20 5.15/2.20 s2t_in_ga(x1, x2) = s2t_in_ga(x1) 5.15/2.20 5.15/2.20 s(x1) = s(x1) 5.15/2.20 5.15/2.20 U9_ga(x1, x2, x3, x4) = U9_ga(x4) 5.15/2.20 5.15/2.20 U10_ga(x1, x2, x3, x4) = U10_ga(x4) 5.15/2.20 5.15/2.20 U11_ga(x1, x2, x3, x4) = U11_ga(x4) 5.15/2.20 5.15/2.20 s2t_out_ga(x1, x2) = s2t_out_ga(x2) 5.15/2.20 5.15/2.20 node(x1, x2, x3) = node(x1, x3) 5.15/2.20 5.15/2.20 0 = 0 5.15/2.20 5.15/2.20 U2_gaa(x1, x2, x3, x4) = U2_gaa(x4) 5.15/2.20 5.15/2.20 tapplast_in_gaa(x1, x2, x3) = tapplast_in_gaa(x1) 5.15/2.20 5.15/2.20 U3_gaa(x1, x2, x3, x4) = U3_gaa(x4) 5.15/2.20 5.15/2.20 tappend_in_gga(x1, x2, x3) = tappend_in_gga(x1, x2) 5.15/2.20 5.15/2.20 nil = nil 5.15/2.20 5.15/2.20 tappend_out_gga(x1, x2, x3) = tappend_out_gga(x3) 5.15/2.20 5.15/2.20 U7_gga(x1, x2, x3, x4, x5, x6) = U7_gga(x3, x6) 5.15/2.20 5.15/2.20 U8_gga(x1, x2, x3, x4, x5, x6) = U8_gga(x1, x6) 5.15/2.20 5.15/2.20 U4_gaa(x1, x2, x3, x4) = U4_gaa(x4) 5.15/2.20 5.15/2.20 tlast_in_ag(x1, x2) = tlast_in_ag(x2) 5.15/2.20 5.15/2.20 tlast_out_ag(x1, x2) = tlast_out_ag 5.15/2.20 5.15/2.20 U5_ag(x1, x2, x3, x4, x5) = U5_ag(x5) 5.15/2.20 5.15/2.20 U6_ag(x1, x2, x3, x4, x5) = U6_ag(x5) 5.15/2.20 5.15/2.20 tapplast_out_gaa(x1, x2, x3) = tapplast_out_gaa 5.15/2.20 5.15/2.20 goal_out_gaa(x1, x2, x3) = goal_out_gaa 5.15/2.20 5.15/2.20 TLAST_IN_AG(x1, x2) = TLAST_IN_AG(x2) 5.15/2.20 5.15/2.20 5.15/2.20 We have to consider all (P,R,Pi)-chains 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (8) UsableRulesProof (EQUIVALENT) 5.15/2.20 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (9) 5.15/2.20 Obligation: 5.15/2.20 Pi DP problem: 5.15/2.20 The TRS P consists of the following rules: 5.15/2.20 5.15/2.20 TLAST_IN_AG(X, node(L, H, R)) -> TLAST_IN_AG(X, R) 5.15/2.20 TLAST_IN_AG(X, node(L, H, R)) -> TLAST_IN_AG(X, L) 5.15/2.20 5.15/2.20 R is empty. 5.15/2.20 The argument filtering Pi contains the following mapping: 5.15/2.20 node(x1, x2, x3) = node(x1, x3) 5.15/2.20 5.15/2.20 TLAST_IN_AG(x1, x2) = TLAST_IN_AG(x2) 5.15/2.20 5.15/2.20 5.15/2.20 We have to consider all (P,R,Pi)-chains 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (10) PiDPToQDPProof (SOUND) 5.15/2.20 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (11) 5.15/2.20 Obligation: 5.15/2.20 Q DP problem: 5.15/2.20 The TRS P consists of the following rules: 5.15/2.20 5.15/2.20 TLAST_IN_AG(node(L, R)) -> TLAST_IN_AG(R) 5.15/2.20 TLAST_IN_AG(node(L, R)) -> TLAST_IN_AG(L) 5.15/2.20 5.15/2.20 R is empty. 5.15/2.20 Q is empty. 5.15/2.20 We have to consider all (P,Q,R)-chains. 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (12) QDPSizeChangeProof (EQUIVALENT) 5.15/2.20 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 5.15/2.20 5.15/2.20 From the DPs we obtained the following set of size-change graphs: 5.15/2.20 *TLAST_IN_AG(node(L, R)) -> TLAST_IN_AG(R) 5.15/2.20 The graph contains the following edges 1 > 1 5.15/2.20 5.15/2.20 5.15/2.20 *TLAST_IN_AG(node(L, R)) -> TLAST_IN_AG(L) 5.15/2.20 The graph contains the following edges 1 > 1 5.15/2.20 5.15/2.20 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (13) 5.15/2.20 YES 5.15/2.20 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (14) 5.15/2.20 Obligation: 5.15/2.20 Pi DP problem: 5.15/2.20 The TRS P consists of the following rules: 5.15/2.20 5.15/2.20 TAPPEND_IN_GGA(node(T1, X, T2), T3, node(T1, X, U)) -> TAPPEND_IN_GGA(T2, T3, U) 5.15/2.20 TAPPEND_IN_GGA(node(T1, X, T2), T3, node(U, X, T2)) -> TAPPEND_IN_GGA(T1, T3, U) 5.15/2.20 5.15/2.20 The TRS R consists of the following rules: 5.15/2.20 5.15/2.20 goal_in_gaa(A, B, C) -> U1_gaa(A, B, C, s2t_in_ga(A, T)) 5.15/2.20 s2t_in_ga(s(X), node(T, Y, T)) -> U9_ga(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(nil, Y, T)) -> U10_ga(X, Y, T, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(T, Y, nil)) -> U11_ga(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(nil, Y, nil)) -> s2t_out_ga(s(X), node(nil, Y, nil)) 5.15/2.20 s2t_in_ga(0, nil) -> s2t_out_ga(0, nil) 5.15/2.20 U11_ga(X, T, Y, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(T, Y, nil)) 5.15/2.20 U10_ga(X, Y, T, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(nil, Y, T)) 5.15/2.20 U9_ga(X, T, Y, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(T, Y, T)) 5.15/2.20 U1_gaa(A, B, C, s2t_out_ga(A, T)) -> U2_gaa(A, B, C, tapplast_in_gaa(T, B, C)) 5.15/2.20 tapplast_in_gaa(L, X, Last) -> U3_gaa(L, X, Last, tappend_in_gga(L, node(nil, X, nil), LX)) 5.15/2.20 tappend_in_gga(nil, T, T) -> tappend_out_gga(nil, T, T) 5.15/2.20 tappend_in_gga(node(nil, X, T2), T1, node(T1, X, T2)) -> tappend_out_gga(node(nil, X, T2), T1, node(T1, X, T2)) 5.15/2.20 tappend_in_gga(node(T1, X, nil), T2, node(T1, X, T2)) -> tappend_out_gga(node(T1, X, nil), T2, node(T1, X, T2)) 5.15/2.20 tappend_in_gga(node(T1, X, T2), T3, node(U, X, T2)) -> U7_gga(T1, X, T2, T3, U, tappend_in_gga(T1, T3, U)) 5.15/2.20 tappend_in_gga(node(T1, X, T2), T3, node(T1, X, U)) -> U8_gga(T1, X, T2, T3, U, tappend_in_gga(T2, T3, U)) 5.15/2.20 U8_gga(T1, X, T2, T3, U, tappend_out_gga(T2, T3, U)) -> tappend_out_gga(node(T1, X, T2), T3, node(T1, X, U)) 5.15/2.20 U7_gga(T1, X, T2, T3, U, tappend_out_gga(T1, T3, U)) -> tappend_out_gga(node(T1, X, T2), T3, node(U, X, T2)) 5.15/2.20 U3_gaa(L, X, Last, tappend_out_gga(L, node(nil, X, nil), LX)) -> U4_gaa(L, X, Last, tlast_in_ag(Last, LX)) 5.15/2.20 tlast_in_ag(X, node(nil, X, nil)) -> tlast_out_ag(X, node(nil, X, nil)) 5.15/2.20 tlast_in_ag(X, node(L, H, R)) -> U5_ag(X, L, H, R, tlast_in_ag(X, L)) 5.15/2.20 tlast_in_ag(X, node(L, H, R)) -> U6_ag(X, L, H, R, tlast_in_ag(X, R)) 5.15/2.20 U6_ag(X, L, H, R, tlast_out_ag(X, R)) -> tlast_out_ag(X, node(L, H, R)) 5.15/2.20 U5_ag(X, L, H, R, tlast_out_ag(X, L)) -> tlast_out_ag(X, node(L, H, R)) 5.15/2.20 U4_gaa(L, X, Last, tlast_out_ag(Last, LX)) -> tapplast_out_gaa(L, X, Last) 5.15/2.20 U2_gaa(A, B, C, tapplast_out_gaa(T, B, C)) -> goal_out_gaa(A, B, C) 5.15/2.20 5.15/2.20 The argument filtering Pi contains the following mapping: 5.15/2.20 goal_in_gaa(x1, x2, x3) = goal_in_gaa(x1) 5.15/2.20 5.15/2.20 U1_gaa(x1, x2, x3, x4) = U1_gaa(x4) 5.15/2.20 5.15/2.20 s2t_in_ga(x1, x2) = s2t_in_ga(x1) 5.15/2.20 5.15/2.20 s(x1) = s(x1) 5.15/2.20 5.15/2.20 U9_ga(x1, x2, x3, x4) = U9_ga(x4) 5.15/2.20 5.15/2.20 U10_ga(x1, x2, x3, x4) = U10_ga(x4) 5.15/2.20 5.15/2.20 U11_ga(x1, x2, x3, x4) = U11_ga(x4) 5.15/2.20 5.15/2.20 s2t_out_ga(x1, x2) = s2t_out_ga(x2) 5.15/2.20 5.15/2.20 node(x1, x2, x3) = node(x1, x3) 5.15/2.20 5.15/2.20 0 = 0 5.15/2.20 5.15/2.20 U2_gaa(x1, x2, x3, x4) = U2_gaa(x4) 5.15/2.20 5.15/2.20 tapplast_in_gaa(x1, x2, x3) = tapplast_in_gaa(x1) 5.15/2.20 5.15/2.20 U3_gaa(x1, x2, x3, x4) = U3_gaa(x4) 5.15/2.20 5.15/2.20 tappend_in_gga(x1, x2, x3) = tappend_in_gga(x1, x2) 5.15/2.20 5.15/2.20 nil = nil 5.15/2.20 5.15/2.20 tappend_out_gga(x1, x2, x3) = tappend_out_gga(x3) 5.15/2.20 5.15/2.20 U7_gga(x1, x2, x3, x4, x5, x6) = U7_gga(x3, x6) 5.15/2.20 5.15/2.20 U8_gga(x1, x2, x3, x4, x5, x6) = U8_gga(x1, x6) 5.15/2.20 5.15/2.20 U4_gaa(x1, x2, x3, x4) = U4_gaa(x4) 5.15/2.20 5.15/2.20 tlast_in_ag(x1, x2) = tlast_in_ag(x2) 5.15/2.20 5.15/2.20 tlast_out_ag(x1, x2) = tlast_out_ag 5.15/2.20 5.15/2.20 U5_ag(x1, x2, x3, x4, x5) = U5_ag(x5) 5.15/2.20 5.15/2.20 U6_ag(x1, x2, x3, x4, x5) = U6_ag(x5) 5.15/2.20 5.15/2.20 tapplast_out_gaa(x1, x2, x3) = tapplast_out_gaa 5.15/2.20 5.15/2.20 goal_out_gaa(x1, x2, x3) = goal_out_gaa 5.15/2.20 5.15/2.20 TAPPEND_IN_GGA(x1, x2, x3) = TAPPEND_IN_GGA(x1, x2) 5.15/2.20 5.15/2.20 5.15/2.20 We have to consider all (P,R,Pi)-chains 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (15) UsableRulesProof (EQUIVALENT) 5.15/2.20 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (16) 5.15/2.20 Obligation: 5.15/2.20 Pi DP problem: 5.15/2.20 The TRS P consists of the following rules: 5.15/2.20 5.15/2.20 TAPPEND_IN_GGA(node(T1, X, T2), T3, node(T1, X, U)) -> TAPPEND_IN_GGA(T2, T3, U) 5.15/2.20 TAPPEND_IN_GGA(node(T1, X, T2), T3, node(U, X, T2)) -> TAPPEND_IN_GGA(T1, T3, U) 5.15/2.20 5.15/2.20 R is empty. 5.15/2.20 The argument filtering Pi contains the following mapping: 5.15/2.20 node(x1, x2, x3) = node(x1, x3) 5.15/2.20 5.15/2.20 TAPPEND_IN_GGA(x1, x2, x3) = TAPPEND_IN_GGA(x1, x2) 5.15/2.20 5.15/2.20 5.15/2.20 We have to consider all (P,R,Pi)-chains 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (17) PiDPToQDPProof (SOUND) 5.15/2.20 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (18) 5.15/2.20 Obligation: 5.15/2.20 Q DP problem: 5.15/2.20 The TRS P consists of the following rules: 5.15/2.20 5.15/2.20 TAPPEND_IN_GGA(node(T1, T2), T3) -> TAPPEND_IN_GGA(T2, T3) 5.15/2.20 TAPPEND_IN_GGA(node(T1, T2), T3) -> TAPPEND_IN_GGA(T1, T3) 5.15/2.20 5.15/2.20 R is empty. 5.15/2.20 Q is empty. 5.15/2.20 We have to consider all (P,Q,R)-chains. 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (19) QDPSizeChangeProof (EQUIVALENT) 5.15/2.20 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 5.15/2.20 5.15/2.20 From the DPs we obtained the following set of size-change graphs: 5.15/2.20 *TAPPEND_IN_GGA(node(T1, T2), T3) -> TAPPEND_IN_GGA(T2, T3) 5.15/2.20 The graph contains the following edges 1 > 1, 2 >= 2 5.15/2.20 5.15/2.20 5.15/2.20 *TAPPEND_IN_GGA(node(T1, T2), T3) -> TAPPEND_IN_GGA(T1, T3) 5.15/2.20 The graph contains the following edges 1 > 1, 2 >= 2 5.15/2.20 5.15/2.20 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (20) 5.15/2.20 YES 5.15/2.20 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (21) 5.15/2.20 Obligation: 5.15/2.20 Pi DP problem: 5.15/2.20 The TRS P consists of the following rules: 5.15/2.20 5.15/2.20 S2T_IN_GA(s(X), node(nil, Y, T)) -> S2T_IN_GA(X, T) 5.15/2.20 S2T_IN_GA(s(X), node(T, Y, T)) -> S2T_IN_GA(X, T) 5.15/2.20 S2T_IN_GA(s(X), node(T, Y, nil)) -> S2T_IN_GA(X, T) 5.15/2.20 5.15/2.20 The TRS R consists of the following rules: 5.15/2.20 5.15/2.20 goal_in_gaa(A, B, C) -> U1_gaa(A, B, C, s2t_in_ga(A, T)) 5.15/2.20 s2t_in_ga(s(X), node(T, Y, T)) -> U9_ga(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(nil, Y, T)) -> U10_ga(X, Y, T, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(T, Y, nil)) -> U11_ga(X, T, Y, s2t_in_ga(X, T)) 5.15/2.20 s2t_in_ga(s(X), node(nil, Y, nil)) -> s2t_out_ga(s(X), node(nil, Y, nil)) 5.15/2.20 s2t_in_ga(0, nil) -> s2t_out_ga(0, nil) 5.15/2.20 U11_ga(X, T, Y, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(T, Y, nil)) 5.15/2.20 U10_ga(X, Y, T, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(nil, Y, T)) 5.15/2.20 U9_ga(X, T, Y, s2t_out_ga(X, T)) -> s2t_out_ga(s(X), node(T, Y, T)) 5.15/2.20 U1_gaa(A, B, C, s2t_out_ga(A, T)) -> U2_gaa(A, B, C, tapplast_in_gaa(T, B, C)) 5.15/2.20 tapplast_in_gaa(L, X, Last) -> U3_gaa(L, X, Last, tappend_in_gga(L, node(nil, X, nil), LX)) 5.15/2.20 tappend_in_gga(nil, T, T) -> tappend_out_gga(nil, T, T) 5.15/2.20 tappend_in_gga(node(nil, X, T2), T1, node(T1, X, T2)) -> tappend_out_gga(node(nil, X, T2), T1, node(T1, X, T2)) 5.15/2.20 tappend_in_gga(node(T1, X, nil), T2, node(T1, X, T2)) -> tappend_out_gga(node(T1, X, nil), T2, node(T1, X, T2)) 5.15/2.20 tappend_in_gga(node(T1, X, T2), T3, node(U, X, T2)) -> U7_gga(T1, X, T2, T3, U, tappend_in_gga(T1, T3, U)) 5.15/2.20 tappend_in_gga(node(T1, X, T2), T3, node(T1, X, U)) -> U8_gga(T1, X, T2, T3, U, tappend_in_gga(T2, T3, U)) 5.15/2.20 U8_gga(T1, X, T2, T3, U, tappend_out_gga(T2, T3, U)) -> tappend_out_gga(node(T1, X, T2), T3, node(T1, X, U)) 5.15/2.20 U7_gga(T1, X, T2, T3, U, tappend_out_gga(T1, T3, U)) -> tappend_out_gga(node(T1, X, T2), T3, node(U, X, T2)) 5.15/2.20 U3_gaa(L, X, Last, tappend_out_gga(L, node(nil, X, nil), LX)) -> U4_gaa(L, X, Last, tlast_in_ag(Last, LX)) 5.15/2.20 tlast_in_ag(X, node(nil, X, nil)) -> tlast_out_ag(X, node(nil, X, nil)) 5.15/2.20 tlast_in_ag(X, node(L, H, R)) -> U5_ag(X, L, H, R, tlast_in_ag(X, L)) 5.15/2.20 tlast_in_ag(X, node(L, H, R)) -> U6_ag(X, L, H, R, tlast_in_ag(X, R)) 5.15/2.20 U6_ag(X, L, H, R, tlast_out_ag(X, R)) -> tlast_out_ag(X, node(L, H, R)) 5.15/2.20 U5_ag(X, L, H, R, tlast_out_ag(X, L)) -> tlast_out_ag(X, node(L, H, R)) 5.15/2.20 U4_gaa(L, X, Last, tlast_out_ag(Last, LX)) -> tapplast_out_gaa(L, X, Last) 5.15/2.20 U2_gaa(A, B, C, tapplast_out_gaa(T, B, C)) -> goal_out_gaa(A, B, C) 5.15/2.20 5.15/2.20 The argument filtering Pi contains the following mapping: 5.15/2.20 goal_in_gaa(x1, x2, x3) = goal_in_gaa(x1) 5.15/2.20 5.15/2.20 U1_gaa(x1, x2, x3, x4) = U1_gaa(x4) 5.15/2.20 5.15/2.20 s2t_in_ga(x1, x2) = s2t_in_ga(x1) 5.15/2.20 5.15/2.20 s(x1) = s(x1) 5.15/2.20 5.15/2.20 U9_ga(x1, x2, x3, x4) = U9_ga(x4) 5.15/2.20 5.15/2.20 U10_ga(x1, x2, x3, x4) = U10_ga(x4) 5.15/2.20 5.15/2.20 U11_ga(x1, x2, x3, x4) = U11_ga(x4) 5.15/2.20 5.15/2.20 s2t_out_ga(x1, x2) = s2t_out_ga(x2) 5.15/2.20 5.15/2.20 node(x1, x2, x3) = node(x1, x3) 5.15/2.20 5.15/2.20 0 = 0 5.15/2.20 5.15/2.20 U2_gaa(x1, x2, x3, x4) = U2_gaa(x4) 5.15/2.20 5.15/2.20 tapplast_in_gaa(x1, x2, x3) = tapplast_in_gaa(x1) 5.15/2.20 5.15/2.20 U3_gaa(x1, x2, x3, x4) = U3_gaa(x4) 5.15/2.20 5.15/2.20 tappend_in_gga(x1, x2, x3) = tappend_in_gga(x1, x2) 5.15/2.20 5.15/2.20 nil = nil 5.15/2.20 5.15/2.20 tappend_out_gga(x1, x2, x3) = tappend_out_gga(x3) 5.15/2.20 5.15/2.20 U7_gga(x1, x2, x3, x4, x5, x6) = U7_gga(x3, x6) 5.15/2.20 5.15/2.20 U8_gga(x1, x2, x3, x4, x5, x6) = U8_gga(x1, x6) 5.15/2.20 5.15/2.20 U4_gaa(x1, x2, x3, x4) = U4_gaa(x4) 5.15/2.20 5.15/2.20 tlast_in_ag(x1, x2) = tlast_in_ag(x2) 5.15/2.20 5.15/2.20 tlast_out_ag(x1, x2) = tlast_out_ag 5.15/2.20 5.15/2.20 U5_ag(x1, x2, x3, x4, x5) = U5_ag(x5) 5.15/2.20 5.15/2.20 U6_ag(x1, x2, x3, x4, x5) = U6_ag(x5) 5.15/2.20 5.15/2.20 tapplast_out_gaa(x1, x2, x3) = tapplast_out_gaa 5.15/2.20 5.15/2.20 goal_out_gaa(x1, x2, x3) = goal_out_gaa 5.15/2.20 5.15/2.20 S2T_IN_GA(x1, x2) = S2T_IN_GA(x1) 5.15/2.20 5.15/2.20 5.15/2.20 We have to consider all (P,R,Pi)-chains 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (22) UsableRulesProof (EQUIVALENT) 5.15/2.20 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (23) 5.15/2.20 Obligation: 5.15/2.20 Pi DP problem: 5.15/2.20 The TRS P consists of the following rules: 5.15/2.20 5.15/2.20 S2T_IN_GA(s(X), node(nil, Y, T)) -> S2T_IN_GA(X, T) 5.15/2.20 S2T_IN_GA(s(X), node(T, Y, T)) -> S2T_IN_GA(X, T) 5.15/2.20 S2T_IN_GA(s(X), node(T, Y, nil)) -> S2T_IN_GA(X, T) 5.15/2.20 5.15/2.20 R is empty. 5.15/2.20 The argument filtering Pi contains the following mapping: 5.15/2.20 s(x1) = s(x1) 5.15/2.20 5.15/2.20 node(x1, x2, x3) = node(x1, x3) 5.15/2.20 5.15/2.20 nil = nil 5.15/2.20 5.15/2.20 S2T_IN_GA(x1, x2) = S2T_IN_GA(x1) 5.15/2.20 5.15/2.20 5.15/2.20 We have to consider all (P,R,Pi)-chains 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (24) PiDPToQDPProof (SOUND) 5.15/2.20 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (25) 5.15/2.20 Obligation: 5.15/2.20 Q DP problem: 5.15/2.20 The TRS P consists of the following rules: 5.15/2.20 5.15/2.20 S2T_IN_GA(s(X)) -> S2T_IN_GA(X) 5.15/2.20 5.15/2.20 R is empty. 5.15/2.20 Q is empty. 5.15/2.20 We have to consider all (P,Q,R)-chains. 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (26) QDPSizeChangeProof (EQUIVALENT) 5.15/2.20 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 5.15/2.20 5.15/2.20 From the DPs we obtained the following set of size-change graphs: 5.15/2.20 *S2T_IN_GA(s(X)) -> S2T_IN_GA(X) 5.15/2.20 The graph contains the following edges 1 > 1 5.15/2.20 5.15/2.20 5.15/2.20 ---------------------------------------- 5.15/2.20 5.15/2.20 (27) 5.15/2.20 YES 5.15/2.22 EOF