5.89/2.32 MAYBE 5.89/2.34 proof of /export/starexec/sandbox2/benchmark/theBenchmark.pl 5.89/2.34 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.89/2.34 5.89/2.34 5.89/2.34 Left Termination of the query pattern 5.89/2.34 5.89/2.34 p(a,a,a) 5.89/2.34 5.89/2.34 w.r.t. the given Prolog program could not be shown: 5.89/2.34 5.89/2.34 (0) Prolog 5.89/2.34 (1) PrologToPiTRSProof [SOUND, 0 ms] 5.89/2.34 (2) PiTRS 5.89/2.34 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 5.89/2.34 (4) PiDP 5.89/2.34 (5) DependencyGraphProof [EQUIVALENT, 1 ms] 5.89/2.34 (6) PiDP 5.89/2.34 (7) UsableRulesProof [EQUIVALENT, 0 ms] 5.89/2.34 (8) PiDP 5.89/2.34 (9) PiDPToQDPProof [SOUND, 0 ms] 5.89/2.34 (10) QDP 5.89/2.34 (11) PrologToTRSTransformerProof [SOUND, 0 ms] 5.89/2.34 (12) QTRS 5.89/2.34 (13) QTRSRRRProof [EQUIVALENT, 0 ms] 5.89/2.34 (14) QTRS 5.89/2.34 (15) Overlay + Local Confluence [EQUIVALENT, 0 ms] 5.89/2.34 (16) QTRS 5.89/2.34 (17) DependencyPairsProof [EQUIVALENT, 0 ms] 5.89/2.34 (18) QDP 5.89/2.34 (19) UsableRulesProof [EQUIVALENT, 0 ms] 5.89/2.34 (20) QDP 5.89/2.34 (21) QReductionProof [EQUIVALENT, 0 ms] 5.89/2.34 (22) QDP 5.89/2.34 (23) PrologToPiTRSProof [SOUND, 0 ms] 5.89/2.34 (24) PiTRS 5.89/2.34 (25) DependencyPairsProof [EQUIVALENT, 0 ms] 5.89/2.34 (26) PiDP 5.89/2.34 (27) DependencyGraphProof [EQUIVALENT, 0 ms] 5.89/2.34 (28) PiDP 5.89/2.34 (29) UsableRulesProof [EQUIVALENT, 0 ms] 5.89/2.34 (30) PiDP 5.89/2.34 (31) PiDPToQDPProof [SOUND, 0 ms] 5.89/2.34 (32) QDP 5.89/2.34 (33) PrologToDTProblemTransformerProof [SOUND, 0 ms] 5.89/2.34 (34) TRIPLES 5.89/2.34 (35) TriplesToPiDPProof [SOUND, 1 ms] 5.89/2.34 (36) PiDP 5.89/2.34 (37) DependencyGraphProof [EQUIVALENT, 0 ms] 5.89/2.34 (38) PiDP 5.89/2.34 (39) PiDPToQDPProof [SOUND, 0 ms] 5.89/2.34 (40) QDP 5.89/2.34 (41) PrologToIRSwTTransformerProof [SOUND, 0 ms] 5.89/2.34 (42) IRSwT 5.89/2.34 (43) IRSwTSimpleDependencyGraphProof [EQUIVALENT, 0 ms] 5.89/2.34 (44) IRSwT 5.89/2.34 (45) IntTRSCompressionProof [EQUIVALENT, 18 ms] 5.89/2.34 (46) IRSwT 5.89/2.34 (47) IRSFormatTransformerProof [EQUIVALENT, 0 ms] 5.89/2.34 (48) IRSwT 5.89/2.34 (49) IRSwTTerminationDigraphProof [EQUIVALENT, 0 ms] 5.89/2.34 (50) IRSwT 5.89/2.34 (51) FilterProof [EQUIVALENT, 0 ms] 5.89/2.34 (52) IntTRS 5.89/2.34 (53) IntTRSPeriodicNontermProof [COMPLETE, 5 ms] 5.89/2.34 (54) NO 5.89/2.34 5.89/2.34 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (0) 5.89/2.34 Obligation: 5.89/2.34 Clauses: 5.89/2.34 5.89/2.34 p(X, Y, Z) :- append(.(X, Y), Z, Y). 5.89/2.34 append([], Y, Y). 5.89/2.34 append(.(H, Xs), Ys, .(H, Zs)) :- append(Xs, Ys, Zs). 5.89/2.34 5.89/2.34 5.89/2.34 Query: p(a,a,a) 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (1) PrologToPiTRSProof (SOUND) 5.89/2.34 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 5.89/2.34 5.89/2.34 p_in_3: (f,f,f) 5.89/2.34 5.89/2.34 append_in_3: (f,f,f) 5.89/2.34 5.89/2.34 Transforming Prolog into the following Term Rewriting System: 5.89/2.34 5.89/2.34 Pi-finite rewrite system: 5.89/2.34 The TRS R consists of the following rules: 5.89/2.34 5.89/2.34 p_in_aaa(X, Y, Z) -> U1_aaa(X, Y, Z, append_in_aaa(.(X, Y), Z, Y)) 5.89/2.34 append_in_aaa([], Y, Y) -> append_out_aaa([], Y, Y) 5.89/2.34 append_in_aaa(.(H, Xs), Ys, .(H, Zs)) -> U2_aaa(H, Xs, Ys, Zs, append_in_aaa(Xs, Ys, Zs)) 5.89/2.34 U2_aaa(H, Xs, Ys, Zs, append_out_aaa(Xs, Ys, Zs)) -> append_out_aaa(.(H, Xs), Ys, .(H, Zs)) 5.89/2.34 U1_aaa(X, Y, Z, append_out_aaa(.(X, Y), Z, Y)) -> p_out_aaa(X, Y, Z) 5.89/2.34 5.89/2.34 The argument filtering Pi contains the following mapping: 5.89/2.34 p_in_aaa(x1, x2, x3) = p_in_aaa 5.89/2.34 5.89/2.34 U1_aaa(x1, x2, x3, x4) = U1_aaa(x4) 5.89/2.34 5.89/2.34 append_in_aaa(x1, x2, x3) = append_in_aaa 5.89/2.34 5.89/2.34 .(x1, x2) = .(x2) 5.89/2.34 5.89/2.34 append_out_aaa(x1, x2, x3) = append_out_aaa(x1) 5.89/2.34 5.89/2.34 U2_aaa(x1, x2, x3, x4, x5) = U2_aaa(x5) 5.89/2.34 5.89/2.34 p_out_aaa(x1, x2, x3) = p_out_aaa(x2) 5.89/2.34 5.89/2.34 5.89/2.34 5.89/2.34 5.89/2.34 5.89/2.34 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 5.89/2.34 5.89/2.34 5.89/2.34 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (2) 5.89/2.34 Obligation: 5.89/2.34 Pi-finite rewrite system: 5.89/2.34 The TRS R consists of the following rules: 5.89/2.34 5.89/2.34 p_in_aaa(X, Y, Z) -> U1_aaa(X, Y, Z, append_in_aaa(.(X, Y), Z, Y)) 5.89/2.34 append_in_aaa([], Y, Y) -> append_out_aaa([], Y, Y) 5.89/2.34 append_in_aaa(.(H, Xs), Ys, .(H, Zs)) -> U2_aaa(H, Xs, Ys, Zs, append_in_aaa(Xs, Ys, Zs)) 5.89/2.34 U2_aaa(H, Xs, Ys, Zs, append_out_aaa(Xs, Ys, Zs)) -> append_out_aaa(.(H, Xs), Ys, .(H, Zs)) 5.89/2.34 U1_aaa(X, Y, Z, append_out_aaa(.(X, Y), Z, Y)) -> p_out_aaa(X, Y, Z) 5.89/2.34 5.89/2.34 The argument filtering Pi contains the following mapping: 5.89/2.34 p_in_aaa(x1, x2, x3) = p_in_aaa 5.89/2.34 5.89/2.34 U1_aaa(x1, x2, x3, x4) = U1_aaa(x4) 5.89/2.34 5.89/2.34 append_in_aaa(x1, x2, x3) = append_in_aaa 5.89/2.34 5.89/2.34 .(x1, x2) = .(x2) 5.89/2.34 5.89/2.34 append_out_aaa(x1, x2, x3) = append_out_aaa(x1) 5.89/2.34 5.89/2.34 U2_aaa(x1, x2, x3, x4, x5) = U2_aaa(x5) 5.89/2.34 5.89/2.34 p_out_aaa(x1, x2, x3) = p_out_aaa(x2) 5.89/2.34 5.89/2.34 5.89/2.34 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (3) DependencyPairsProof (EQUIVALENT) 5.89/2.34 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 5.89/2.34 Pi DP problem: 5.89/2.34 The TRS P consists of the following rules: 5.89/2.34 5.89/2.34 P_IN_AAA(X, Y, Z) -> U1_AAA(X, Y, Z, append_in_aaa(.(X, Y), Z, Y)) 5.89/2.34 P_IN_AAA(X, Y, Z) -> APPEND_IN_AAA(.(X, Y), Z, Y) 5.89/2.34 APPEND_IN_AAA(.(H, Xs), Ys, .(H, Zs)) -> U2_AAA(H, Xs, Ys, Zs, append_in_aaa(Xs, Ys, Zs)) 5.89/2.34 APPEND_IN_AAA(.(H, Xs), Ys, .(H, Zs)) -> APPEND_IN_AAA(Xs, Ys, Zs) 5.89/2.34 5.89/2.34 The TRS R consists of the following rules: 5.89/2.34 5.89/2.34 p_in_aaa(X, Y, Z) -> U1_aaa(X, Y, Z, append_in_aaa(.(X, Y), Z, Y)) 5.89/2.34 append_in_aaa([], Y, Y) -> append_out_aaa([], Y, Y) 5.89/2.34 append_in_aaa(.(H, Xs), Ys, .(H, Zs)) -> U2_aaa(H, Xs, Ys, Zs, append_in_aaa(Xs, Ys, Zs)) 5.89/2.34 U2_aaa(H, Xs, Ys, Zs, append_out_aaa(Xs, Ys, Zs)) -> append_out_aaa(.(H, Xs), Ys, .(H, Zs)) 5.89/2.34 U1_aaa(X, Y, Z, append_out_aaa(.(X, Y), Z, Y)) -> p_out_aaa(X, Y, Z) 5.89/2.34 5.89/2.34 The argument filtering Pi contains the following mapping: 5.89/2.34 p_in_aaa(x1, x2, x3) = p_in_aaa 5.89/2.34 5.89/2.34 U1_aaa(x1, x2, x3, x4) = U1_aaa(x4) 5.89/2.34 5.89/2.34 append_in_aaa(x1, x2, x3) = append_in_aaa 5.89/2.34 5.89/2.34 .(x1, x2) = .(x2) 5.89/2.34 5.89/2.34 append_out_aaa(x1, x2, x3) = append_out_aaa(x1) 5.89/2.34 5.89/2.34 U2_aaa(x1, x2, x3, x4, x5) = U2_aaa(x5) 5.89/2.34 5.89/2.34 p_out_aaa(x1, x2, x3) = p_out_aaa(x2) 5.89/2.34 5.89/2.34 P_IN_AAA(x1, x2, x3) = P_IN_AAA 5.89/2.34 5.89/2.34 U1_AAA(x1, x2, x3, x4) = U1_AAA(x4) 5.89/2.34 5.89/2.34 APPEND_IN_AAA(x1, x2, x3) = APPEND_IN_AAA 5.89/2.34 5.89/2.34 U2_AAA(x1, x2, x3, x4, x5) = U2_AAA(x5) 5.89/2.34 5.89/2.34 5.89/2.34 We have to consider all (P,R,Pi)-chains 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (4) 5.89/2.34 Obligation: 5.89/2.34 Pi DP problem: 5.89/2.34 The TRS P consists of the following rules: 5.89/2.34 5.89/2.34 P_IN_AAA(X, Y, Z) -> U1_AAA(X, Y, Z, append_in_aaa(.(X, Y), Z, Y)) 5.89/2.34 P_IN_AAA(X, Y, Z) -> APPEND_IN_AAA(.(X, Y), Z, Y) 5.89/2.34 APPEND_IN_AAA(.(H, Xs), Ys, .(H, Zs)) -> U2_AAA(H, Xs, Ys, Zs, append_in_aaa(Xs, Ys, Zs)) 5.89/2.34 APPEND_IN_AAA(.(H, Xs), Ys, .(H, Zs)) -> APPEND_IN_AAA(Xs, Ys, Zs) 5.89/2.34 5.89/2.34 The TRS R consists of the following rules: 5.89/2.34 5.89/2.34 p_in_aaa(X, Y, Z) -> U1_aaa(X, Y, Z, append_in_aaa(.(X, Y), Z, Y)) 5.89/2.34 append_in_aaa([], Y, Y) -> append_out_aaa([], Y, Y) 5.89/2.34 append_in_aaa(.(H, Xs), Ys, .(H, Zs)) -> U2_aaa(H, Xs, Ys, Zs, append_in_aaa(Xs, Ys, Zs)) 5.89/2.34 U2_aaa(H, Xs, Ys, Zs, append_out_aaa(Xs, Ys, Zs)) -> append_out_aaa(.(H, Xs), Ys, .(H, Zs)) 5.89/2.34 U1_aaa(X, Y, Z, append_out_aaa(.(X, Y), Z, Y)) -> p_out_aaa(X, Y, Z) 5.89/2.34 5.89/2.34 The argument filtering Pi contains the following mapping: 5.89/2.34 p_in_aaa(x1, x2, x3) = p_in_aaa 5.89/2.34 5.89/2.34 U1_aaa(x1, x2, x3, x4) = U1_aaa(x4) 5.89/2.34 5.89/2.34 append_in_aaa(x1, x2, x3) = append_in_aaa 5.89/2.34 5.89/2.34 .(x1, x2) = .(x2) 5.89/2.34 5.89/2.34 append_out_aaa(x1, x2, x3) = append_out_aaa(x1) 5.89/2.34 5.89/2.34 U2_aaa(x1, x2, x3, x4, x5) = U2_aaa(x5) 5.89/2.34 5.89/2.34 p_out_aaa(x1, x2, x3) = p_out_aaa(x2) 5.89/2.34 5.89/2.34 P_IN_AAA(x1, x2, x3) = P_IN_AAA 5.89/2.34 5.89/2.34 U1_AAA(x1, x2, x3, x4) = U1_AAA(x4) 5.89/2.34 5.89/2.34 APPEND_IN_AAA(x1, x2, x3) = APPEND_IN_AAA 5.89/2.34 5.89/2.34 U2_AAA(x1, x2, x3, x4, x5) = U2_AAA(x5) 5.89/2.34 5.89/2.34 5.89/2.34 We have to consider all (P,R,Pi)-chains 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (5) DependencyGraphProof (EQUIVALENT) 5.89/2.34 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes. 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (6) 5.89/2.34 Obligation: 5.89/2.34 Pi DP problem: 5.89/2.34 The TRS P consists of the following rules: 5.89/2.34 5.89/2.34 APPEND_IN_AAA(.(H, Xs), Ys, .(H, Zs)) -> APPEND_IN_AAA(Xs, Ys, Zs) 5.89/2.34 5.89/2.34 The TRS R consists of the following rules: 5.89/2.34 5.89/2.34 p_in_aaa(X, Y, Z) -> U1_aaa(X, Y, Z, append_in_aaa(.(X, Y), Z, Y)) 5.89/2.34 append_in_aaa([], Y, Y) -> append_out_aaa([], Y, Y) 5.89/2.34 append_in_aaa(.(H, Xs), Ys, .(H, Zs)) -> U2_aaa(H, Xs, Ys, Zs, append_in_aaa(Xs, Ys, Zs)) 5.89/2.34 U2_aaa(H, Xs, Ys, Zs, append_out_aaa(Xs, Ys, Zs)) -> append_out_aaa(.(H, Xs), Ys, .(H, Zs)) 5.89/2.34 U1_aaa(X, Y, Z, append_out_aaa(.(X, Y), Z, Y)) -> p_out_aaa(X, Y, Z) 5.89/2.34 5.89/2.34 The argument filtering Pi contains the following mapping: 5.89/2.34 p_in_aaa(x1, x2, x3) = p_in_aaa 5.89/2.34 5.89/2.34 U1_aaa(x1, x2, x3, x4) = U1_aaa(x4) 5.89/2.34 5.89/2.34 append_in_aaa(x1, x2, x3) = append_in_aaa 5.89/2.34 5.89/2.34 .(x1, x2) = .(x2) 5.89/2.34 5.89/2.34 append_out_aaa(x1, x2, x3) = append_out_aaa(x1) 5.89/2.34 5.89/2.34 U2_aaa(x1, x2, x3, x4, x5) = U2_aaa(x5) 5.89/2.34 5.89/2.34 p_out_aaa(x1, x2, x3) = p_out_aaa(x2) 5.89/2.34 5.89/2.34 APPEND_IN_AAA(x1, x2, x3) = APPEND_IN_AAA 5.89/2.34 5.89/2.34 5.89/2.34 We have to consider all (P,R,Pi)-chains 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (7) UsableRulesProof (EQUIVALENT) 5.89/2.34 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (8) 5.89/2.34 Obligation: 5.89/2.34 Pi DP problem: 5.89/2.34 The TRS P consists of the following rules: 5.89/2.34 5.89/2.34 APPEND_IN_AAA(.(H, Xs), Ys, .(H, Zs)) -> APPEND_IN_AAA(Xs, Ys, Zs) 5.89/2.34 5.89/2.34 R is empty. 5.89/2.34 The argument filtering Pi contains the following mapping: 5.89/2.34 .(x1, x2) = .(x2) 5.89/2.34 5.89/2.34 APPEND_IN_AAA(x1, x2, x3) = APPEND_IN_AAA 5.89/2.34 5.89/2.34 5.89/2.34 We have to consider all (P,R,Pi)-chains 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (9) PiDPToQDPProof (SOUND) 5.89/2.34 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (10) 5.89/2.34 Obligation: 5.89/2.34 Q DP problem: 5.89/2.34 The TRS P consists of the following rules: 5.89/2.34 5.89/2.34 APPEND_IN_AAA -> APPEND_IN_AAA 5.89/2.34 5.89/2.34 R is empty. 5.89/2.34 Q is empty. 5.89/2.34 We have to consider all (P,Q,R)-chains. 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (11) PrologToTRSTransformerProof (SOUND) 5.89/2.34 Transformed Prolog program to TRS. 5.89/2.34 5.89/2.34 { 5.89/2.34 "root": 1, 5.89/2.34 "program": { 5.89/2.34 "directives": [], 5.89/2.34 "clauses": [ 5.89/2.34 [ 5.89/2.34 "(p X Y Z)", 5.89/2.34 "(append (. X Y) Z Y)" 5.89/2.34 ], 5.89/2.34 [ 5.89/2.34 "(append ([]) Y Y)", 5.89/2.34 null 5.89/2.34 ], 5.89/2.34 [ 5.89/2.34 "(append (. H Xs) Ys (. H Zs))", 5.89/2.34 "(append Xs Ys Zs)" 5.89/2.34 ] 5.89/2.34 ] 5.89/2.34 }, 5.89/2.34 "graph": { 5.89/2.34 "nodes": { 5.89/2.34 "110": { 5.89/2.34 "goal": [{ 5.89/2.34 "clause": -1, 5.89/2.34 "scope": -1, 5.89/2.34 "term": "(append (. T33 T32) T31 T32)" 5.89/2.34 }], 5.89/2.34 "kb": { 5.89/2.34 "nonunifying": [], 5.89/2.34 "intvars": {}, 5.89/2.34 "arithmetic": { 5.89/2.34 "type": "PlainIntegerRelationState", 5.89/2.34 "relations": [] 5.89/2.34 }, 5.89/2.34 "ground": [], 5.89/2.34 "free": [], 5.89/2.34 "exprvars": [] 5.89/2.34 } 5.89/2.34 }, 5.89/2.34 "1": { 5.89/2.34 "goal": [{ 5.89/2.34 "clause": -1, 5.89/2.34 "scope": -1, 5.89/2.34 "term": "(p T1 T2 T3)" 5.89/2.34 }], 5.89/2.34 "kb": { 5.89/2.34 "nonunifying": [], 5.89/2.34 "intvars": {}, 5.89/2.34 "arithmetic": { 5.89/2.34 "type": "PlainIntegerRelationState", 5.89/2.34 "relations": [] 5.89/2.34 }, 5.89/2.34 "ground": [], 5.89/2.34 "free": [], 5.89/2.34 "exprvars": [] 5.89/2.34 } 5.89/2.34 }, 5.89/2.34 "111": { 5.89/2.34 "goal": [], 5.89/2.34 "kb": { 5.89/2.34 "nonunifying": [], 5.89/2.34 "intvars": {}, 5.89/2.34 "arithmetic": { 5.89/2.34 "type": "PlainIntegerRelationState", 5.89/2.34 "relations": [] 5.89/2.34 }, 5.89/2.34 "ground": [], 5.89/2.34 "free": [], 5.89/2.34 "exprvars": [] 5.89/2.34 } 5.89/2.34 }, 5.89/2.34 "102": { 5.89/2.34 "goal": [{ 5.89/2.34 "clause": 0, 5.89/2.34 "scope": 1, 5.89/2.34 "term": "(p T1 T2 T3)" 5.89/2.34 }], 5.89/2.34 "kb": { 5.89/2.34 "nonunifying": [], 5.89/2.34 "intvars": {}, 5.89/2.34 "arithmetic": { 5.89/2.34 "type": "PlainIntegerRelationState", 5.89/2.34 "relations": [] 5.89/2.34 }, 5.89/2.34 "ground": [], 5.89/2.34 "free": [], 5.89/2.34 "exprvars": [] 5.89/2.34 } 5.89/2.34 }, 5.89/2.34 "105": { 5.89/2.34 "goal": [{ 5.89/2.34 "clause": -1, 5.89/2.34 "scope": -1, 5.89/2.34 "term": "(append (. T18 T17) T16 T17)" 5.89/2.34 }], 5.89/2.34 "kb": { 5.89/2.34 "nonunifying": [], 5.89/2.34 "intvars": {}, 5.89/2.34 "arithmetic": { 5.89/2.34 "type": "PlainIntegerRelationState", 5.89/2.34 "relations": [] 5.89/2.34 }, 5.89/2.34 "ground": [], 5.89/2.34 "free": [], 5.89/2.34 "exprvars": [] 5.89/2.34 } 5.89/2.34 }, 5.89/2.34 "106": { 5.89/2.34 "goal": [ 5.89/2.34 { 5.89/2.34 "clause": 1, 5.89/2.34 "scope": 2, 5.89/2.34 "term": "(append (. T18 T17) T16 T17)" 5.89/2.34 }, 5.89/2.34 { 5.89/2.34 "clause": 2, 5.89/2.34 "scope": 2, 5.89/2.34 "term": "(append (. T18 T17) T16 T17)" 5.89/2.34 } 5.89/2.34 ], 5.89/2.34 "kb": { 5.89/2.34 "nonunifying": [], 5.89/2.34 "intvars": {}, 5.89/2.34 "arithmetic": { 5.89/2.34 "type": "PlainIntegerRelationState", 5.89/2.34 "relations": [] 5.89/2.34 }, 5.89/2.34 "ground": [], 5.89/2.34 "free": [], 5.89/2.34 "exprvars": [] 5.89/2.34 } 5.89/2.34 }, 5.89/2.34 "107": { 5.89/2.34 "goal": [{ 5.89/2.34 "clause": 2, 5.89/2.34 "scope": 2, 5.89/2.34 "term": "(append (. T18 T17) T16 T17)" 5.89/2.34 }], 5.89/2.34 "kb": { 5.89/2.34 "nonunifying": [], 5.89/2.34 "intvars": {}, 5.89/2.34 "arithmetic": { 5.89/2.34 "type": "PlainIntegerRelationState", 5.89/2.34 "relations": [] 5.89/2.34 }, 5.89/2.34 "ground": [], 5.89/2.34 "free": [], 5.89/2.34 "exprvars": [] 5.89/2.34 } 5.89/2.34 }, 5.89/2.34 "type": "Nodes" 5.89/2.34 }, 5.89/2.34 "edges": [ 5.89/2.34 { 5.89/2.34 "from": 1, 5.89/2.34 "to": 102, 5.89/2.34 "label": "CASE" 5.89/2.34 }, 5.89/2.34 { 5.89/2.34 "from": 102, 5.89/2.34 "to": 105, 5.89/2.34 "label": "ONLY EVAL with clause\np(X9, X10, X11) :- append(.(X9, X10), X11, X10).\nand substitutionT1 -> T18,\nX9 -> T18,\nT2 -> T17,\nX10 -> T17,\nT3 -> T16,\nX11 -> T16,\nT15 -> T16,\nT14 -> T17,\nT13 -> T18" 5.89/2.34 }, 5.89/2.34 { 5.89/2.34 "from": 105, 5.89/2.34 "to": 106, 5.89/2.34 "label": "CASE" 5.89/2.34 }, 5.89/2.34 { 5.89/2.34 "from": 106, 5.89/2.34 "to": 107, 5.89/2.34 "label": "BACKTRACK\nfor clause: append([], Y, Y)because of non-unification" 5.89/2.34 }, 5.89/2.34 { 5.89/2.34 "from": 107, 5.89/2.34 "to": 110, 5.89/2.34 "label": "EVAL with clause\nappend(.(X23, X24), X25, .(X23, X26)) :- append(X24, X25, X26).\nand substitutionT18 -> T33,\nX23 -> T33,\nT17 -> .(T33, T32),\nX24 -> .(T33, T32),\nT16 -> T31,\nX25 -> T31,\nX26 -> T32,\nT28 -> .(T33, T32),\nT29 -> T31,\nT30 -> T32,\nT27 -> T33" 5.89/2.34 }, 5.89/2.34 { 5.89/2.34 "from": 107, 5.89/2.34 "to": 111, 5.89/2.34 "label": "EVAL-BACKTRACK" 5.89/2.34 }, 5.89/2.34 { 5.89/2.34 "from": 110, 5.89/2.34 "to": 105, 5.89/2.34 "label": "INSTANCE with matching:\nT18 -> T33\nT17 -> T32\nT16 -> T31" 5.89/2.34 } 5.89/2.34 ], 5.89/2.34 "type": "Graph" 5.89/2.34 } 5.89/2.34 } 5.89/2.34 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (12) 5.89/2.34 Obligation: 5.89/2.34 Q restricted rewrite system: 5.89/2.34 The TRS R consists of the following rules: 5.89/2.34 5.89/2.34 f1_in -> U1(f105_in) 5.89/2.34 U1(f105_out1) -> f1_out1 5.89/2.34 f105_in -> U2(f105_in) 5.89/2.34 U2(f105_out1) -> f105_out1 5.89/2.34 5.89/2.34 Q is empty. 5.89/2.34 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (13) QTRSRRRProof (EQUIVALENT) 5.89/2.34 Used ordering: 5.89/2.34 Polynomial interpretation [POLO]: 5.89/2.34 5.89/2.34 POL(U1(x_1)) = 2*x_1 5.89/2.34 POL(U2(x_1)) = 2*x_1 5.89/2.34 POL(f105_in) = 0 5.89/2.34 POL(f105_out1) = 2 5.89/2.34 POL(f1_in) = 1 5.89/2.34 POL(f1_out1) = 0 5.89/2.34 With this ordering the following rules can be removed by the rule removal processor [LPAR04] because they are oriented strictly: 5.89/2.34 5.89/2.34 f1_in -> U1(f105_in) 5.89/2.34 U1(f105_out1) -> f1_out1 5.89/2.34 U2(f105_out1) -> f105_out1 5.89/2.34 5.89/2.34 5.89/2.34 5.89/2.34 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (14) 5.89/2.34 Obligation: 5.89/2.34 Q restricted rewrite system: 5.89/2.34 The TRS R consists of the following rules: 5.89/2.34 5.89/2.34 f105_in -> U2(f105_in) 5.89/2.34 5.89/2.34 Q is empty. 5.89/2.34 5.89/2.34 ---------------------------------------- 5.89/2.34 5.89/2.34 (15) Overlay + Local Confluence (EQUIVALENT) 5.89/2.34 The TRS is overlay and locally confluent. By [NOC] we can switch to innermost. 5.89/2.34 ---------------------------------------- 5.89/2.35 5.89/2.35 (16) 5.89/2.35 Obligation: 5.89/2.35 Q restricted rewrite system: 5.89/2.35 The TRS R consists of the following rules: 5.89/2.35 5.89/2.35 f105_in -> U2(f105_in) 5.89/2.35 5.89/2.35 The set Q consists of the following terms: 5.89/2.35 5.89/2.35 f105_in 5.89/2.35 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (17) DependencyPairsProof (EQUIVALENT) 5.89/2.35 Using Dependency Pairs [AG00,LPAR04] we result in the following initial DP problem. 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (18) 5.89/2.35 Obligation: 5.89/2.35 Q DP problem: 5.89/2.35 The TRS P consists of the following rules: 5.89/2.35 5.89/2.35 F105_IN -> F105_IN 5.89/2.35 5.89/2.35 The TRS R consists of the following rules: 5.89/2.35 5.89/2.35 f105_in -> U2(f105_in) 5.89/2.35 5.89/2.35 The set Q consists of the following terms: 5.89/2.35 5.89/2.35 f105_in 5.89/2.35 5.89/2.35 We have to consider all minimal (P,Q,R)-chains. 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (19) UsableRulesProof (EQUIVALENT) 5.89/2.35 As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R. 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (20) 5.89/2.35 Obligation: 5.89/2.35 Q DP problem: 5.89/2.35 The TRS P consists of the following rules: 5.89/2.35 5.89/2.35 F105_IN -> F105_IN 5.89/2.35 5.89/2.35 R is empty. 5.89/2.35 The set Q consists of the following terms: 5.89/2.35 5.89/2.35 f105_in 5.89/2.35 5.89/2.35 We have to consider all minimal (P,Q,R)-chains. 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (21) QReductionProof (EQUIVALENT) 5.89/2.35 We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN]. 5.89/2.35 5.89/2.35 f105_in 5.89/2.35 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (22) 5.89/2.35 Obligation: 5.89/2.35 Q DP problem: 5.89/2.35 The TRS P consists of the following rules: 5.89/2.35 5.89/2.35 F105_IN -> F105_IN 5.89/2.35 5.89/2.35 R is empty. 5.89/2.35 Q is empty. 5.89/2.35 We have to consider all minimal (P,Q,R)-chains. 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (23) PrologToPiTRSProof (SOUND) 5.89/2.35 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 5.89/2.35 5.89/2.35 p_in_3: (f,f,f) 5.89/2.35 5.89/2.35 append_in_3: (f,f,f) 5.89/2.35 5.89/2.35 Transforming Prolog into the following Term Rewriting System: 5.89/2.35 5.89/2.35 Pi-finite rewrite system: 5.89/2.35 The TRS R consists of the following rules: 5.89/2.35 5.89/2.35 p_in_aaa(X, Y, Z) -> U1_aaa(X, Y, Z, append_in_aaa(.(X, Y), Z, Y)) 5.89/2.35 append_in_aaa([], Y, Y) -> append_out_aaa([], Y, Y) 5.89/2.35 append_in_aaa(.(H, Xs), Ys, .(H, Zs)) -> U2_aaa(H, Xs, Ys, Zs, append_in_aaa(Xs, Ys, Zs)) 5.89/2.35 U2_aaa(H, Xs, Ys, Zs, append_out_aaa(Xs, Ys, Zs)) -> append_out_aaa(.(H, Xs), Ys, .(H, Zs)) 5.89/2.35 U1_aaa(X, Y, Z, append_out_aaa(.(X, Y), Z, Y)) -> p_out_aaa(X, Y, Z) 5.89/2.35 5.89/2.35 The argument filtering Pi contains the following mapping: 5.89/2.35 p_in_aaa(x1, x2, x3) = p_in_aaa 5.89/2.35 5.89/2.35 U1_aaa(x1, x2, x3, x4) = U1_aaa(x4) 5.89/2.35 5.89/2.35 append_in_aaa(x1, x2, x3) = append_in_aaa 5.89/2.35 5.89/2.35 .(x1, x2) = .(x2) 5.89/2.35 5.89/2.35 append_out_aaa(x1, x2, x3) = append_out_aaa(x1) 5.89/2.35 5.89/2.35 U2_aaa(x1, x2, x3, x4, x5) = U2_aaa(x5) 5.89/2.35 5.89/2.35 p_out_aaa(x1, x2, x3) = p_out_aaa(x2) 5.89/2.35 5.89/2.35 5.89/2.35 5.89/2.35 5.89/2.35 5.89/2.35 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 5.89/2.35 5.89/2.35 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (24) 5.89/2.35 Obligation: 5.89/2.35 Pi-finite rewrite system: 5.89/2.35 The TRS R consists of the following rules: 5.89/2.35 5.89/2.35 p_in_aaa(X, Y, Z) -> U1_aaa(X, Y, Z, append_in_aaa(.(X, Y), Z, Y)) 5.89/2.35 append_in_aaa([], Y, Y) -> append_out_aaa([], Y, Y) 5.89/2.35 append_in_aaa(.(H, Xs), Ys, .(H, Zs)) -> U2_aaa(H, Xs, Ys, Zs, append_in_aaa(Xs, Ys, Zs)) 5.89/2.35 U2_aaa(H, Xs, Ys, Zs, append_out_aaa(Xs, Ys, Zs)) -> append_out_aaa(.(H, Xs), Ys, .(H, Zs)) 5.89/2.35 U1_aaa(X, Y, Z, append_out_aaa(.(X, Y), Z, Y)) -> p_out_aaa(X, Y, Z) 5.89/2.35 5.89/2.35 The argument filtering Pi contains the following mapping: 5.89/2.35 p_in_aaa(x1, x2, x3) = p_in_aaa 5.89/2.35 5.89/2.35 U1_aaa(x1, x2, x3, x4) = U1_aaa(x4) 5.89/2.35 5.89/2.35 append_in_aaa(x1, x2, x3) = append_in_aaa 5.89/2.35 5.89/2.35 .(x1, x2) = .(x2) 5.89/2.35 5.89/2.35 append_out_aaa(x1, x2, x3) = append_out_aaa(x1) 5.89/2.35 5.89/2.35 U2_aaa(x1, x2, x3, x4, x5) = U2_aaa(x5) 5.89/2.35 5.89/2.35 p_out_aaa(x1, x2, x3) = p_out_aaa(x2) 5.89/2.35 5.89/2.35 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (25) DependencyPairsProof (EQUIVALENT) 5.89/2.35 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 5.89/2.35 Pi DP problem: 5.89/2.35 The TRS P consists of the following rules: 5.89/2.35 5.89/2.35 P_IN_AAA(X, Y, Z) -> U1_AAA(X, Y, Z, append_in_aaa(.(X, Y), Z, Y)) 5.89/2.35 P_IN_AAA(X, Y, Z) -> APPEND_IN_AAA(.(X, Y), Z, Y) 5.89/2.35 APPEND_IN_AAA(.(H, Xs), Ys, .(H, Zs)) -> U2_AAA(H, Xs, Ys, Zs, append_in_aaa(Xs, Ys, Zs)) 5.89/2.35 APPEND_IN_AAA(.(H, Xs), Ys, .(H, Zs)) -> APPEND_IN_AAA(Xs, Ys, Zs) 5.89/2.35 5.89/2.35 The TRS R consists of the following rules: 5.89/2.35 5.89/2.35 p_in_aaa(X, Y, Z) -> U1_aaa(X, Y, Z, append_in_aaa(.(X, Y), Z, Y)) 5.89/2.35 append_in_aaa([], Y, Y) -> append_out_aaa([], Y, Y) 5.89/2.35 append_in_aaa(.(H, Xs), Ys, .(H, Zs)) -> U2_aaa(H, Xs, Ys, Zs, append_in_aaa(Xs, Ys, Zs)) 5.89/2.35 U2_aaa(H, Xs, Ys, Zs, append_out_aaa(Xs, Ys, Zs)) -> append_out_aaa(.(H, Xs), Ys, .(H, Zs)) 5.89/2.35 U1_aaa(X, Y, Z, append_out_aaa(.(X, Y), Z, Y)) -> p_out_aaa(X, Y, Z) 5.89/2.35 5.89/2.35 The argument filtering Pi contains the following mapping: 5.89/2.35 p_in_aaa(x1, x2, x3) = p_in_aaa 5.89/2.35 5.89/2.35 U1_aaa(x1, x2, x3, x4) = U1_aaa(x4) 5.89/2.35 5.89/2.35 append_in_aaa(x1, x2, x3) = append_in_aaa 5.89/2.35 5.89/2.35 .(x1, x2) = .(x2) 5.89/2.35 5.89/2.35 append_out_aaa(x1, x2, x3) = append_out_aaa(x1) 5.89/2.35 5.89/2.35 U2_aaa(x1, x2, x3, x4, x5) = U2_aaa(x5) 5.89/2.35 5.89/2.35 p_out_aaa(x1, x2, x3) = p_out_aaa(x2) 5.89/2.35 5.89/2.35 P_IN_AAA(x1, x2, x3) = P_IN_AAA 5.89/2.35 5.89/2.35 U1_AAA(x1, x2, x3, x4) = U1_AAA(x4) 5.89/2.35 5.89/2.35 APPEND_IN_AAA(x1, x2, x3) = APPEND_IN_AAA 5.89/2.35 5.89/2.35 U2_AAA(x1, x2, x3, x4, x5) = U2_AAA(x5) 5.89/2.35 5.89/2.35 5.89/2.35 We have to consider all (P,R,Pi)-chains 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (26) 5.89/2.35 Obligation: 5.89/2.35 Pi DP problem: 5.89/2.35 The TRS P consists of the following rules: 5.89/2.35 5.89/2.35 P_IN_AAA(X, Y, Z) -> U1_AAA(X, Y, Z, append_in_aaa(.(X, Y), Z, Y)) 5.89/2.35 P_IN_AAA(X, Y, Z) -> APPEND_IN_AAA(.(X, Y), Z, Y) 5.89/2.35 APPEND_IN_AAA(.(H, Xs), Ys, .(H, Zs)) -> U2_AAA(H, Xs, Ys, Zs, append_in_aaa(Xs, Ys, Zs)) 5.89/2.35 APPEND_IN_AAA(.(H, Xs), Ys, .(H, Zs)) -> APPEND_IN_AAA(Xs, Ys, Zs) 5.89/2.35 5.89/2.35 The TRS R consists of the following rules: 5.89/2.35 5.89/2.35 p_in_aaa(X, Y, Z) -> U1_aaa(X, Y, Z, append_in_aaa(.(X, Y), Z, Y)) 5.89/2.35 append_in_aaa([], Y, Y) -> append_out_aaa([], Y, Y) 5.89/2.35 append_in_aaa(.(H, Xs), Ys, .(H, Zs)) -> U2_aaa(H, Xs, Ys, Zs, append_in_aaa(Xs, Ys, Zs)) 5.89/2.35 U2_aaa(H, Xs, Ys, Zs, append_out_aaa(Xs, Ys, Zs)) -> append_out_aaa(.(H, Xs), Ys, .(H, Zs)) 5.89/2.35 U1_aaa(X, Y, Z, append_out_aaa(.(X, Y), Z, Y)) -> p_out_aaa(X, Y, Z) 5.89/2.35 5.89/2.35 The argument filtering Pi contains the following mapping: 5.89/2.35 p_in_aaa(x1, x2, x3) = p_in_aaa 5.89/2.35 5.89/2.35 U1_aaa(x1, x2, x3, x4) = U1_aaa(x4) 5.89/2.35 5.89/2.35 append_in_aaa(x1, x2, x3) = append_in_aaa 5.89/2.35 5.89/2.35 .(x1, x2) = .(x2) 5.89/2.35 5.89/2.35 append_out_aaa(x1, x2, x3) = append_out_aaa(x1) 5.89/2.35 5.89/2.35 U2_aaa(x1, x2, x3, x4, x5) = U2_aaa(x5) 5.89/2.35 5.89/2.35 p_out_aaa(x1, x2, x3) = p_out_aaa(x2) 5.89/2.35 5.89/2.35 P_IN_AAA(x1, x2, x3) = P_IN_AAA 5.89/2.35 5.89/2.35 U1_AAA(x1, x2, x3, x4) = U1_AAA(x4) 5.89/2.35 5.89/2.35 APPEND_IN_AAA(x1, x2, x3) = APPEND_IN_AAA 5.89/2.35 5.89/2.35 U2_AAA(x1, x2, x3, x4, x5) = U2_AAA(x5) 5.89/2.35 5.89/2.35 5.89/2.35 We have to consider all (P,R,Pi)-chains 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (27) DependencyGraphProof (EQUIVALENT) 5.89/2.35 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes. 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (28) 5.89/2.35 Obligation: 5.89/2.35 Pi DP problem: 5.89/2.35 The TRS P consists of the following rules: 5.89/2.35 5.89/2.35 APPEND_IN_AAA(.(H, Xs), Ys, .(H, Zs)) -> APPEND_IN_AAA(Xs, Ys, Zs) 5.89/2.35 5.89/2.35 The TRS R consists of the following rules: 5.89/2.35 5.89/2.35 p_in_aaa(X, Y, Z) -> U1_aaa(X, Y, Z, append_in_aaa(.(X, Y), Z, Y)) 5.89/2.35 append_in_aaa([], Y, Y) -> append_out_aaa([], Y, Y) 5.89/2.35 append_in_aaa(.(H, Xs), Ys, .(H, Zs)) -> U2_aaa(H, Xs, Ys, Zs, append_in_aaa(Xs, Ys, Zs)) 5.89/2.35 U2_aaa(H, Xs, Ys, Zs, append_out_aaa(Xs, Ys, Zs)) -> append_out_aaa(.(H, Xs), Ys, .(H, Zs)) 5.89/2.35 U1_aaa(X, Y, Z, append_out_aaa(.(X, Y), Z, Y)) -> p_out_aaa(X, Y, Z) 5.89/2.35 5.89/2.35 The argument filtering Pi contains the following mapping: 5.89/2.35 p_in_aaa(x1, x2, x3) = p_in_aaa 5.89/2.35 5.89/2.35 U1_aaa(x1, x2, x3, x4) = U1_aaa(x4) 5.89/2.35 5.89/2.35 append_in_aaa(x1, x2, x3) = append_in_aaa 5.89/2.35 5.89/2.35 .(x1, x2) = .(x2) 5.89/2.35 5.89/2.35 append_out_aaa(x1, x2, x3) = append_out_aaa(x1) 5.89/2.35 5.89/2.35 U2_aaa(x1, x2, x3, x4, x5) = U2_aaa(x5) 5.89/2.35 5.89/2.35 p_out_aaa(x1, x2, x3) = p_out_aaa(x2) 5.89/2.35 5.89/2.35 APPEND_IN_AAA(x1, x2, x3) = APPEND_IN_AAA 5.89/2.35 5.89/2.35 5.89/2.35 We have to consider all (P,R,Pi)-chains 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (29) UsableRulesProof (EQUIVALENT) 5.89/2.35 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (30) 5.89/2.35 Obligation: 5.89/2.35 Pi DP problem: 5.89/2.35 The TRS P consists of the following rules: 5.89/2.35 5.89/2.35 APPEND_IN_AAA(.(H, Xs), Ys, .(H, Zs)) -> APPEND_IN_AAA(Xs, Ys, Zs) 5.89/2.35 5.89/2.35 R is empty. 5.89/2.35 The argument filtering Pi contains the following mapping: 5.89/2.35 .(x1, x2) = .(x2) 5.89/2.35 5.89/2.35 APPEND_IN_AAA(x1, x2, x3) = APPEND_IN_AAA 5.89/2.35 5.89/2.35 5.89/2.35 We have to consider all (P,R,Pi)-chains 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (31) PiDPToQDPProof (SOUND) 5.89/2.35 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (32) 5.89/2.35 Obligation: 5.89/2.35 Q DP problem: 5.89/2.35 The TRS P consists of the following rules: 5.89/2.35 5.89/2.35 APPEND_IN_AAA -> APPEND_IN_AAA 5.89/2.35 5.89/2.35 R is empty. 5.89/2.35 Q is empty. 5.89/2.35 We have to consider all (P,Q,R)-chains. 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (33) PrologToDTProblemTransformerProof (SOUND) 5.89/2.35 Built DT problem from termination graph DT10. 5.89/2.35 5.89/2.35 { 5.89/2.35 "root": 2, 5.89/2.35 "program": { 5.89/2.35 "directives": [], 5.89/2.35 "clauses": [ 5.89/2.35 [ 5.89/2.35 "(p X Y Z)", 5.89/2.35 "(append (. X Y) Z Y)" 5.89/2.35 ], 5.89/2.35 [ 5.89/2.35 "(append ([]) Y Y)", 5.89/2.35 null 5.89/2.35 ], 5.89/2.35 [ 5.89/2.35 "(append (. H Xs) Ys (. H Zs))", 5.89/2.35 "(append Xs Ys Zs)" 5.89/2.35 ] 5.89/2.35 ] 5.89/2.35 }, 5.89/2.35 "graph": { 5.89/2.35 "nodes": { 5.89/2.35 "2": { 5.89/2.35 "goal": [{ 5.89/2.35 "clause": -1, 5.89/2.35 "scope": -1, 5.89/2.35 "term": "(p T1 T2 T3)" 5.89/2.35 }], 5.89/2.35 "kb": { 5.89/2.35 "nonunifying": [], 5.89/2.35 "intvars": {}, 5.89/2.35 "arithmetic": { 5.89/2.35 "type": "PlainIntegerRelationState", 5.89/2.35 "relations": [] 5.89/2.35 }, 5.89/2.35 "ground": [], 5.89/2.35 "free": [], 5.89/2.35 "exprvars": [] 5.89/2.35 } 5.89/2.35 }, 5.89/2.35 "112": { 5.89/2.35 "goal": [{ 5.89/2.35 "clause": 0, 5.89/2.35 "scope": 1, 5.89/2.35 "term": "(p T1 T2 T3)" 5.89/2.35 }], 5.89/2.35 "kb": { 5.89/2.35 "nonunifying": [], 5.89/2.35 "intvars": {}, 5.89/2.35 "arithmetic": { 5.89/2.35 "type": "PlainIntegerRelationState", 5.89/2.35 "relations": [] 5.89/2.35 }, 5.89/2.35 "ground": [], 5.89/2.35 "free": [], 5.89/2.35 "exprvars": [] 5.89/2.35 } 5.89/2.35 }, 5.89/2.35 "113": { 5.89/2.35 "goal": [{ 5.89/2.35 "clause": -1, 5.89/2.35 "scope": -1, 5.89/2.35 "term": "(append (. T12 T11) T10 T11)" 5.89/2.35 }], 5.89/2.35 "kb": { 5.89/2.35 "nonunifying": [], 5.89/2.35 "intvars": {}, 5.89/2.35 "arithmetic": { 5.89/2.35 "type": "PlainIntegerRelationState", 5.89/2.35 "relations": [] 5.89/2.35 }, 5.89/2.35 "ground": [], 5.89/2.35 "free": [], 5.89/2.35 "exprvars": [] 5.89/2.35 } 5.89/2.35 }, 5.89/2.35 "114": { 5.89/2.35 "goal": [ 5.89/2.35 { 5.89/2.35 "clause": 1, 5.89/2.35 "scope": 2, 5.89/2.35 "term": "(append (. T12 T11) T10 T11)" 5.89/2.35 }, 5.89/2.35 { 5.89/2.35 "clause": 2, 5.89/2.35 "scope": 2, 5.89/2.35 "term": "(append (. T12 T11) T10 T11)" 5.89/2.35 } 5.89/2.35 ], 5.89/2.35 "kb": { 5.89/2.35 "nonunifying": [], 5.89/2.35 "intvars": {}, 5.89/2.35 "arithmetic": { 5.89/2.35 "type": "PlainIntegerRelationState", 5.89/2.35 "relations": [] 5.89/2.35 }, 5.89/2.35 "ground": [], 5.89/2.35 "free": [], 5.89/2.35 "exprvars": [] 5.89/2.35 } 5.89/2.35 }, 5.89/2.35 "115": { 5.89/2.35 "goal": [{ 5.89/2.35 "clause": 2, 5.89/2.35 "scope": 2, 5.89/2.35 "term": "(append (. T12 T11) T10 T11)" 5.89/2.35 }], 5.89/2.35 "kb": { 5.89/2.35 "nonunifying": [], 5.89/2.35 "intvars": {}, 5.89/2.35 "arithmetic": { 5.89/2.35 "type": "PlainIntegerRelationState", 5.89/2.35 "relations": [] 5.89/2.35 }, 5.89/2.35 "ground": [], 5.89/2.35 "free": [], 5.89/2.35 "exprvars": [] 5.89/2.35 } 5.89/2.35 }, 5.89/2.35 "116": { 5.89/2.35 "goal": [{ 5.89/2.35 "clause": -1, 5.89/2.35 "scope": -1, 5.89/2.35 "term": "(append (. T27 T26) T25 T26)" 5.89/2.35 }], 5.89/2.35 "kb": { 5.89/2.35 "nonunifying": [], 5.89/2.35 "intvars": {}, 5.89/2.35 "arithmetic": { 5.89/2.35 "type": "PlainIntegerRelationState", 5.89/2.35 "relations": [] 5.89/2.35 }, 5.89/2.35 "ground": [], 5.89/2.35 "free": [], 5.89/2.35 "exprvars": [] 5.89/2.35 } 5.89/2.35 }, 5.89/2.35 "117": { 5.89/2.35 "goal": [], 5.89/2.35 "kb": { 5.89/2.35 "nonunifying": [], 5.89/2.35 "intvars": {}, 5.89/2.35 "arithmetic": { 5.89/2.35 "type": "PlainIntegerRelationState", 5.89/2.35 "relations": [] 5.89/2.35 }, 5.89/2.35 "ground": [], 5.89/2.35 "free": [], 5.89/2.35 "exprvars": [] 5.89/2.35 } 5.89/2.35 }, 5.89/2.35 "type": "Nodes" 5.89/2.35 }, 5.89/2.35 "edges": [ 5.89/2.35 { 5.89/2.35 "from": 2, 5.89/2.35 "to": 112, 5.89/2.35 "label": "CASE" 5.89/2.35 }, 5.89/2.35 { 5.89/2.35 "from": 112, 5.89/2.35 "to": 113, 5.89/2.35 "label": "ONLY EVAL with clause\np(X4, X5, X6) :- append(.(X4, X5), X6, X5).\nand substitutionT1 -> T12,\nX4 -> T12,\nT2 -> T11,\nX5 -> T11,\nT3 -> T10,\nX6 -> T10,\nT9 -> T10,\nT8 -> T11,\nT7 -> T12" 5.89/2.35 }, 5.89/2.35 { 5.89/2.35 "from": 113, 5.89/2.35 "to": 114, 5.89/2.35 "label": "CASE" 5.89/2.35 }, 5.89/2.35 { 5.89/2.35 "from": 114, 5.89/2.35 "to": 115, 5.89/2.35 "label": "BACKTRACK\nfor clause: append([], Y, Y)because of non-unification" 5.89/2.35 }, 5.89/2.35 { 5.89/2.35 "from": 115, 5.89/2.35 "to": 116, 5.89/2.35 "label": "EVAL with clause\nappend(.(X16, X17), X18, .(X16, X19)) :- append(X17, X18, X19).\nand substitutionT12 -> T27,\nX16 -> T27,\nT11 -> .(T27, T26),\nX17 -> .(T27, T26),\nT10 -> T25,\nX18 -> T25,\nX19 -> T26,\nT22 -> .(T27, T26),\nT23 -> T25,\nT24 -> T26,\nT21 -> T27" 5.89/2.35 }, 5.89/2.35 { 5.89/2.35 "from": 115, 5.89/2.35 "to": 117, 5.89/2.35 "label": "EVAL-BACKTRACK" 5.89/2.35 }, 5.89/2.35 { 5.89/2.35 "from": 116, 5.89/2.35 "to": 113, 5.89/2.35 "label": "INSTANCE with matching:\nT12 -> T27\nT11 -> T26\nT10 -> T25" 5.89/2.35 } 5.89/2.35 ], 5.89/2.35 "type": "Graph" 5.89/2.35 } 5.89/2.35 } 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (34) 5.89/2.35 Obligation: 5.89/2.35 Triples: 5.89/2.35 5.89/2.35 appendA(X1, .(X1, X2), X3) :- appendA(X1, X2, X3). 5.89/2.35 pB(X1, X2, X3) :- appendA(X1, X2, X3). 5.89/2.35 5.89/2.35 Clauses: 5.89/2.35 5.89/2.35 appendcA(X1, .(X1, X2), X3) :- appendcA(X1, X2, X3). 5.89/2.35 5.89/2.35 Afs: 5.89/2.35 5.89/2.35 pB(x1, x2, x3) = pB 5.89/2.35 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (35) TriplesToPiDPProof (SOUND) 5.89/2.35 We use the technique of [DT09]. With regard to the inferred argument filtering the predicates were used in the following modes: 5.89/2.35 5.89/2.35 pB_in_3: (f,f,f) 5.89/2.35 5.89/2.35 appendA_in_3: (f,f,f) 5.89/2.35 5.89/2.35 Transforming TRIPLES into the following Term Rewriting System: 5.89/2.35 5.89/2.35 Pi DP problem: 5.89/2.35 The TRS P consists of the following rules: 5.89/2.35 5.89/2.35 PB_IN_AAA(X1, X2, X3) -> U2_AAA(X1, X2, X3, appendA_in_aaa(X1, X2, X3)) 5.89/2.35 PB_IN_AAA(X1, X2, X3) -> APPENDA_IN_AAA(X1, X2, X3) 5.89/2.35 APPENDA_IN_AAA(X1, .(X1, X2), X3) -> U1_AAA(X1, X2, X3, appendA_in_aaa(X1, X2, X3)) 5.89/2.35 APPENDA_IN_AAA(X1, .(X1, X2), X3) -> APPENDA_IN_AAA(X1, X2, X3) 5.89/2.35 5.89/2.35 R is empty. 5.89/2.35 The argument filtering Pi contains the following mapping: 5.89/2.35 appendA_in_aaa(x1, x2, x3) = appendA_in_aaa 5.89/2.35 5.89/2.35 .(x1, x2) = .(x1, x2) 5.89/2.35 5.89/2.35 PB_IN_AAA(x1, x2, x3) = PB_IN_AAA 5.89/2.35 5.89/2.35 U2_AAA(x1, x2, x3, x4) = U2_AAA(x4) 5.89/2.35 5.89/2.35 APPENDA_IN_AAA(x1, x2, x3) = APPENDA_IN_AAA 5.89/2.35 5.89/2.35 U1_AAA(x1, x2, x3, x4) = U1_AAA(x4) 5.89/2.35 5.89/2.35 5.89/2.35 We have to consider all (P,R,Pi)-chains 5.89/2.35 5.89/2.35 5.89/2.35 Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES 5.89/2.35 5.89/2.35 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (36) 5.89/2.35 Obligation: 5.89/2.35 Pi DP problem: 5.89/2.35 The TRS P consists of the following rules: 5.89/2.35 5.89/2.35 PB_IN_AAA(X1, X2, X3) -> U2_AAA(X1, X2, X3, appendA_in_aaa(X1, X2, X3)) 5.89/2.35 PB_IN_AAA(X1, X2, X3) -> APPENDA_IN_AAA(X1, X2, X3) 5.89/2.35 APPENDA_IN_AAA(X1, .(X1, X2), X3) -> U1_AAA(X1, X2, X3, appendA_in_aaa(X1, X2, X3)) 5.89/2.35 APPENDA_IN_AAA(X1, .(X1, X2), X3) -> APPENDA_IN_AAA(X1, X2, X3) 5.89/2.35 5.89/2.35 R is empty. 5.89/2.35 The argument filtering Pi contains the following mapping: 5.89/2.35 appendA_in_aaa(x1, x2, x3) = appendA_in_aaa 5.89/2.35 5.89/2.35 .(x1, x2) = .(x1, x2) 5.89/2.35 5.89/2.35 PB_IN_AAA(x1, x2, x3) = PB_IN_AAA 5.89/2.35 5.89/2.35 U2_AAA(x1, x2, x3, x4) = U2_AAA(x4) 5.89/2.35 5.89/2.35 APPENDA_IN_AAA(x1, x2, x3) = APPENDA_IN_AAA 5.89/2.35 5.89/2.35 U1_AAA(x1, x2, x3, x4) = U1_AAA(x4) 5.89/2.35 5.89/2.35 5.89/2.35 We have to consider all (P,R,Pi)-chains 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (37) DependencyGraphProof (EQUIVALENT) 5.89/2.35 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes. 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (38) 5.89/2.35 Obligation: 5.89/2.35 Pi DP problem: 5.89/2.35 The TRS P consists of the following rules: 5.89/2.35 5.89/2.35 APPENDA_IN_AAA(X1, .(X1, X2), X3) -> APPENDA_IN_AAA(X1, X2, X3) 5.89/2.35 5.89/2.35 R is empty. 5.89/2.35 The argument filtering Pi contains the following mapping: 5.89/2.35 .(x1, x2) = .(x1, x2) 5.89/2.35 5.89/2.35 APPENDA_IN_AAA(x1, x2, x3) = APPENDA_IN_AAA 5.89/2.35 5.89/2.35 5.89/2.35 We have to consider all (P,R,Pi)-chains 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (39) PiDPToQDPProof (SOUND) 5.89/2.35 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (40) 5.89/2.35 Obligation: 5.89/2.35 Q DP problem: 5.89/2.35 The TRS P consists of the following rules: 5.89/2.35 5.89/2.35 APPENDA_IN_AAA -> APPENDA_IN_AAA 5.89/2.35 5.89/2.35 R is empty. 5.89/2.35 Q is empty. 5.89/2.35 We have to consider all (P,Q,R)-chains. 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (41) PrologToIRSwTTransformerProof (SOUND) 5.89/2.35 Transformed Prolog program to IRSwT according to method in Master Thesis of A. Weinert 5.89/2.35 5.89/2.35 { 5.89/2.35 "root": 3, 5.89/2.35 "program": { 5.89/2.35 "directives": [], 5.89/2.35 "clauses": [ 5.89/2.35 [ 5.89/2.35 "(p X Y Z)", 5.89/2.35 "(append (. X Y) Z Y)" 5.89/2.35 ], 5.89/2.35 [ 5.89/2.35 "(append ([]) Y Y)", 5.89/2.35 null 5.89/2.35 ], 5.89/2.35 [ 5.89/2.35 "(append (. H Xs) Ys (. H Zs))", 5.89/2.35 "(append Xs Ys Zs)" 5.89/2.35 ] 5.89/2.35 ] 5.89/2.35 }, 5.89/2.35 "graph": { 5.89/2.35 "nodes": { 5.89/2.35 "101": { 5.89/2.35 "goal": [{ 5.89/2.35 "clause": -1, 5.89/2.35 "scope": -1, 5.89/2.35 "term": "(append (. T18 T17) T16 T17)" 5.89/2.35 }], 5.89/2.35 "kb": { 5.89/2.35 "nonunifying": [], 5.89/2.35 "intvars": {}, 5.89/2.35 "arithmetic": { 5.89/2.35 "type": "PlainIntegerRelationState", 5.89/2.35 "relations": [] 5.89/2.35 }, 5.89/2.35 "ground": [], 5.89/2.35 "free": [], 5.89/2.35 "exprvars": [] 5.89/2.35 } 5.89/2.35 }, 5.89/2.35 "3": { 5.89/2.35 "goal": [{ 5.89/2.35 "clause": -1, 5.89/2.35 "scope": -1, 5.89/2.35 "term": "(p T1 T2 T3)" 5.89/2.35 }], 5.89/2.35 "kb": { 5.89/2.35 "nonunifying": [], 5.89/2.35 "intvars": {}, 5.89/2.35 "arithmetic": { 5.89/2.35 "type": "PlainIntegerRelationState", 5.89/2.35 "relations": [] 5.89/2.35 }, 5.89/2.35 "ground": [], 5.89/2.35 "free": [], 5.89/2.35 "exprvars": [] 5.89/2.35 } 5.89/2.35 }, 5.89/2.35 "103": { 5.89/2.35 "goal": [ 5.89/2.35 { 5.89/2.35 "clause": 1, 5.89/2.35 "scope": 2, 5.89/2.35 "term": "(append (. T18 T17) T16 T17)" 5.89/2.35 }, 5.89/2.35 { 5.89/2.35 "clause": 2, 5.89/2.35 "scope": 2, 5.89/2.35 "term": "(append (. T18 T17) T16 T17)" 5.89/2.35 } 5.89/2.35 ], 5.89/2.35 "kb": { 5.89/2.35 "nonunifying": [], 5.89/2.35 "intvars": {}, 5.89/2.35 "arithmetic": { 5.89/2.35 "type": "PlainIntegerRelationState", 5.89/2.35 "relations": [] 5.89/2.35 }, 5.89/2.35 "ground": [], 5.89/2.35 "free": [], 5.89/2.35 "exprvars": [] 5.89/2.35 } 5.89/2.35 }, 5.89/2.35 "104": { 5.89/2.35 "goal": [{ 5.89/2.35 "clause": 2, 5.89/2.35 "scope": 2, 5.89/2.35 "term": "(append (. T18 T17) T16 T17)" 5.89/2.35 }], 5.89/2.35 "kb": { 5.89/2.35 "nonunifying": [], 5.89/2.35 "intvars": {}, 5.89/2.35 "arithmetic": { 5.89/2.35 "type": "PlainIntegerRelationState", 5.89/2.35 "relations": [] 5.89/2.35 }, 5.89/2.35 "ground": [], 5.89/2.35 "free": [], 5.89/2.35 "exprvars": [] 5.89/2.35 } 5.89/2.35 }, 5.89/2.35 "8": { 5.89/2.35 "goal": [{ 5.89/2.35 "clause": 0, 5.89/2.35 "scope": 1, 5.89/2.35 "term": "(p T1 T2 T3)" 5.89/2.35 }], 5.89/2.35 "kb": { 5.89/2.35 "nonunifying": [], 5.89/2.35 "intvars": {}, 5.89/2.35 "arithmetic": { 5.89/2.35 "type": "PlainIntegerRelationState", 5.89/2.35 "relations": [] 5.89/2.35 }, 5.89/2.35 "ground": [], 5.89/2.35 "free": [], 5.89/2.35 "exprvars": [] 5.89/2.35 } 5.89/2.35 }, 5.89/2.35 "108": { 5.89/2.35 "goal": [{ 5.89/2.35 "clause": -1, 5.89/2.35 "scope": -1, 5.89/2.35 "term": "(append (. T33 T32) T31 T32)" 5.89/2.35 }], 5.89/2.35 "kb": { 5.89/2.35 "nonunifying": [], 5.89/2.35 "intvars": {}, 5.89/2.35 "arithmetic": { 5.89/2.35 "type": "PlainIntegerRelationState", 5.89/2.35 "relations": [] 5.89/2.35 }, 5.89/2.35 "ground": [], 5.89/2.35 "free": [], 5.89/2.35 "exprvars": [] 5.89/2.35 } 5.89/2.35 }, 5.89/2.35 "109": { 5.89/2.35 "goal": [], 5.89/2.35 "kb": { 5.89/2.35 "nonunifying": [], 5.89/2.35 "intvars": {}, 5.89/2.35 "arithmetic": { 5.89/2.35 "type": "PlainIntegerRelationState", 5.89/2.35 "relations": [] 5.89/2.35 }, 5.89/2.35 "ground": [], 5.89/2.35 "free": [], 5.89/2.35 "exprvars": [] 5.89/2.35 } 5.89/2.35 }, 5.89/2.35 "type": "Nodes" 5.89/2.35 }, 5.89/2.35 "edges": [ 5.89/2.35 { 5.89/2.35 "from": 3, 5.89/2.35 "to": 8, 5.89/2.35 "label": "CASE" 5.89/2.35 }, 5.89/2.35 { 5.89/2.35 "from": 8, 5.89/2.35 "to": 101, 5.89/2.35 "label": "ONLY EVAL with clause\np(X9, X10, X11) :- append(.(X9, X10), X11, X10).\nand substitutionT1 -> T18,\nX9 -> T18,\nT2 -> T17,\nX10 -> T17,\nT3 -> T16,\nX11 -> T16,\nT15 -> T16,\nT14 -> T17,\nT13 -> T18" 5.89/2.35 }, 5.89/2.35 { 5.89/2.35 "from": 101, 5.89/2.35 "to": 103, 5.89/2.35 "label": "CASE" 5.89/2.35 }, 5.89/2.35 { 5.89/2.35 "from": 103, 5.89/2.35 "to": 104, 5.89/2.35 "label": "BACKTRACK\nfor clause: append([], Y, Y)because of non-unification" 5.89/2.35 }, 5.89/2.35 { 5.89/2.35 "from": 104, 5.89/2.35 "to": 108, 5.89/2.35 "label": "EVAL with clause\nappend(.(X23, X24), X25, .(X23, X26)) :- append(X24, X25, X26).\nand substitutionT18 -> T33,\nX23 -> T33,\nT17 -> .(T33, T32),\nX24 -> .(T33, T32),\nT16 -> T31,\nX25 -> T31,\nX26 -> T32,\nT28 -> .(T33, T32),\nT29 -> T31,\nT30 -> T32,\nT27 -> T33" 5.89/2.35 }, 5.89/2.35 { 5.89/2.35 "from": 104, 5.89/2.35 "to": 109, 5.89/2.35 "label": "EVAL-BACKTRACK" 5.89/2.35 }, 5.89/2.35 { 5.89/2.35 "from": 108, 5.89/2.35 "to": 101, 5.89/2.35 "label": "INSTANCE with matching:\nT18 -> T33\nT17 -> T32\nT16 -> T31" 5.89/2.35 } 5.89/2.35 ], 5.89/2.35 "type": "Graph" 5.89/2.35 } 5.89/2.35 } 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (42) 5.89/2.35 Obligation: 5.89/2.35 Rules: 5.89/2.35 f109_out -> f104_out :|: TRUE 5.89/2.35 f104_in -> f109_in :|: TRUE 5.89/2.35 f108_out -> f104_out :|: TRUE 5.89/2.35 f104_in -> f108_in :|: TRUE 5.89/2.35 f103_in -> f104_in :|: TRUE 5.89/2.35 f104_out -> f103_out :|: TRUE 5.89/2.35 f103_out -> f101_out :|: TRUE 5.89/2.35 f101_in -> f103_in :|: TRUE 5.89/2.35 f108_in -> f101_in :|: TRUE 5.89/2.35 f101_out -> f108_out :|: TRUE 5.89/2.35 f8_out -> f3_out :|: TRUE 5.89/2.35 f3_in -> f8_in :|: TRUE 5.89/2.35 f8_in -> f101_in :|: TRUE 5.89/2.35 f101_out -> f8_out :|: TRUE 5.89/2.35 Start term: f3_in 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (43) IRSwTSimpleDependencyGraphProof (EQUIVALENT) 5.89/2.35 Constructed simple dependency graph. 5.89/2.35 5.89/2.35 Simplified to the following IRSwTs: 5.89/2.35 5.89/2.35 intTRSProblem: 5.89/2.35 f104_in -> f108_in :|: TRUE 5.89/2.35 f103_in -> f104_in :|: TRUE 5.89/2.35 f101_in -> f103_in :|: TRUE 5.89/2.35 f108_in -> f101_in :|: TRUE 5.89/2.35 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (44) 5.89/2.35 Obligation: 5.89/2.35 Rules: 5.89/2.35 f104_in -> f108_in :|: TRUE 5.89/2.35 f103_in -> f104_in :|: TRUE 5.89/2.35 f101_in -> f103_in :|: TRUE 5.89/2.35 f108_in -> f101_in :|: TRUE 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (45) IntTRSCompressionProof (EQUIVALENT) 5.89/2.35 Compressed rules. 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (46) 5.89/2.35 Obligation: 5.89/2.35 Rules: 5.89/2.35 f101_in -> f101_in :|: TRUE 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (47) IRSFormatTransformerProof (EQUIVALENT) 5.89/2.35 Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (48) 5.89/2.35 Obligation: 5.89/2.35 Rules: 5.89/2.35 f101_in -> f101_in :|: TRUE 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (49) IRSwTTerminationDigraphProof (EQUIVALENT) 5.89/2.35 Constructed termination digraph! 5.89/2.35 Nodes: 5.89/2.35 (1) f101_in -> f101_in :|: TRUE 5.89/2.35 5.89/2.35 Arcs: 5.89/2.35 (1) -> (1) 5.89/2.35 5.89/2.35 This digraph is fully evaluated! 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (50) 5.89/2.35 Obligation: 5.89/2.35 5.89/2.35 Termination digraph: 5.89/2.35 Nodes: 5.89/2.35 (1) f101_in -> f101_in :|: TRUE 5.89/2.35 5.89/2.35 Arcs: 5.89/2.35 (1) -> (1) 5.89/2.35 5.89/2.35 This digraph is fully evaluated! 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (51) FilterProof (EQUIVALENT) 5.89/2.35 Used the following sort dictionary for filtering: 5.89/2.35 f101_in() 5.89/2.35 Replaced non-predefined constructor symbols by 0. 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (52) 5.89/2.35 Obligation: 5.89/2.35 Rules: 5.89/2.35 f101_in -> f101_in :|: TRUE 5.89/2.35 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (53) IntTRSPeriodicNontermProof (COMPLETE) 5.89/2.35 Normalized system to the following form: 5.89/2.35 f(pc) -> f(1) :|: pc = 1 && TRUE 5.89/2.35 Witness term starting non-terminating reduction: f(1) 5.89/2.35 ---------------------------------------- 5.89/2.35 5.89/2.35 (54) 5.89/2.35 NO 6.11/2.38 EOF