10.22/3.54 YES 10.61/3.58 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 10.61/3.58 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 10.61/3.58 10.61/3.58 10.61/3.58 Left Termination of the query pattern 10.61/3.58 10.61/3.58 d(g,g,a) 10.61/3.58 10.61/3.58 w.r.t. the given Prolog program could successfully be proven: 10.61/3.58 10.61/3.58 (0) Prolog 10.61/3.58 (1) PrologToPiTRSProof [SOUND, 0 ms] 10.61/3.58 (2) PiTRS 10.61/3.58 (3) DependencyPairsProof [EQUIVALENT, 5 ms] 10.61/3.58 (4) PiDP 10.61/3.58 (5) DependencyGraphProof [EQUIVALENT, 1 ms] 10.61/3.58 (6) AND 10.61/3.58 (7) PiDP 10.61/3.58 (8) UsableRulesProof [EQUIVALENT, 0 ms] 10.61/3.58 (9) PiDP 10.61/3.58 (10) PiDPToQDPProof [EQUIVALENT, 0 ms] 10.61/3.58 (11) QDP 10.61/3.58 (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] 10.61/3.58 (13) YES 10.61/3.58 (14) PiDP 10.61/3.58 (15) PiDPToQDPProof [SOUND, 0 ms] 10.61/3.58 (16) QDP 10.61/3.58 (17) QDPQMonotonicMRRProof [EQUIVALENT, 122 ms] 10.61/3.58 (18) QDP 10.61/3.58 (19) QDPQMonotonicMRRProof [EQUIVALENT, 44 ms] 10.61/3.58 (20) QDP 10.61/3.58 (21) QDPSizeChangeProof [EQUIVALENT, 0 ms] 10.61/3.58 (22) YES 10.61/3.58 10.61/3.58 10.61/3.58 ---------------------------------------- 10.61/3.58 10.61/3.58 (0) 10.61/3.58 Obligation: 10.61/3.58 Clauses: 10.61/3.58 10.61/3.58 d(X, X, 1). 10.61/3.58 d(T, X1, 0) :- isnumber(T). 10.61/3.58 d(times(U, V), X, +(times(B, U), times(A, V))) :- ','(d(U, X, A), d(V, X, B)). 10.61/3.58 d(div(U, V), X, W) :- d(times(U, power(V, p(0))), X, W). 10.61/3.58 d(power(U, V), X, times(V, times(W, power(U, p(V))))) :- ','(isnumber(V), d(U, X, W)). 10.61/3.58 isnumber(0). 10.61/3.58 isnumber(s(X)) :- isnumber(X). 10.61/3.58 isnumber(p(X)) :- isnumber(X). 10.61/3.58 10.61/3.58 10.61/3.58 Query: d(g,g,a) 10.61/3.58 ---------------------------------------- 10.61/3.58 10.61/3.58 (1) PrologToPiTRSProof (SOUND) 10.61/3.58 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 10.61/3.58 10.61/3.58 d_in_3: (b,b,f) 10.61/3.58 10.61/3.58 isnumber_in_1: (b) 10.61/3.58 10.61/3.58 Transforming Prolog into the following Term Rewriting System: 10.61/3.58 10.61/3.58 Pi-finite rewrite system: 10.61/3.58 The TRS R consists of the following rules: 10.61/3.58 10.61/3.58 d_in_gga(X, X, 1) -> d_out_gga(X, X, 1) 10.61/3.58 d_in_gga(T, X1, 0) -> U1_gga(T, X1, isnumber_in_g(T)) 10.61/3.58 isnumber_in_g(0) -> isnumber_out_g(0) 10.61/3.58 isnumber_in_g(s(X)) -> U7_g(X, isnumber_in_g(X)) 10.61/3.58 isnumber_in_g(p(X)) -> U8_g(X, isnumber_in_g(X)) 10.61/3.58 U8_g(X, isnumber_out_g(X)) -> isnumber_out_g(p(X)) 10.61/3.58 U7_g(X, isnumber_out_g(X)) -> isnumber_out_g(s(X)) 10.61/3.58 U1_gga(T, X1, isnumber_out_g(T)) -> d_out_gga(T, X1, 0) 10.61/3.58 d_in_gga(times(U, V), X, +(times(B, U), times(A, V))) -> U2_gga(U, V, X, B, A, d_in_gga(U, X, A)) 10.61/3.58 d_in_gga(div(U, V), X, W) -> U4_gga(U, V, X, W, d_in_gga(times(U, power(V, p(0))), X, W)) 10.61/3.58 d_in_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) -> U5_gga(U, V, X, W, isnumber_in_g(V)) 10.61/3.58 U5_gga(U, V, X, W, isnumber_out_g(V)) -> U6_gga(U, V, X, W, d_in_gga(U, X, W)) 10.61/3.58 U6_gga(U, V, X, W, d_out_gga(U, X, W)) -> d_out_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) 10.61/3.58 U4_gga(U, V, X, W, d_out_gga(times(U, power(V, p(0))), X, W)) -> d_out_gga(div(U, V), X, W) 10.61/3.58 U2_gga(U, V, X, B, A, d_out_gga(U, X, A)) -> U3_gga(U, V, X, B, A, d_in_gga(V, X, B)) 10.61/3.58 U3_gga(U, V, X, B, A, d_out_gga(V, X, B)) -> d_out_gga(times(U, V), X, +(times(B, U), times(A, V))) 10.61/3.58 10.61/3.58 The argument filtering Pi contains the following mapping: 10.61/3.58 d_in_gga(x1, x2, x3) = d_in_gga(x1, x2) 10.61/3.58 10.61/3.58 d_out_gga(x1, x2, x3) = d_out_gga(x1, x2, x3) 10.61/3.58 10.61/3.58 U1_gga(x1, x2, x3) = U1_gga(x1, x2, x3) 10.61/3.58 10.61/3.58 isnumber_in_g(x1) = isnumber_in_g(x1) 10.61/3.58 10.61/3.58 0 = 0 10.61/3.58 10.61/3.58 isnumber_out_g(x1) = isnumber_out_g(x1) 10.61/3.58 10.61/3.58 s(x1) = s(x1) 10.61/3.58 10.61/3.58 U7_g(x1, x2) = U7_g(x1, x2) 10.61/3.58 10.61/3.58 p(x1) = p(x1) 10.61/3.58 10.61/3.58 U8_g(x1, x2) = U8_g(x1, x2) 10.61/3.58 10.61/3.58 times(x1, x2) = times(x1, x2) 10.61/3.58 10.61/3.58 U2_gga(x1, x2, x3, x4, x5, x6) = U2_gga(x1, x2, x3, x6) 10.61/3.58 10.61/3.58 div(x1, x2) = div(x1, x2) 10.61/3.58 10.61/3.58 U4_gga(x1, x2, x3, x4, x5) = U4_gga(x1, x2, x3, x5) 10.61/3.58 10.61/3.58 power(x1, x2) = power(x1, x2) 10.61/3.58 10.61/3.58 U5_gga(x1, x2, x3, x4, x5) = U5_gga(x1, x2, x3, x5) 10.61/3.58 10.61/3.58 U6_gga(x1, x2, x3, x4, x5) = U6_gga(x1, x2, x3, x5) 10.61/3.58 10.61/3.58 U3_gga(x1, x2, x3, x4, x5, x6) = U3_gga(x1, x2, x3, x5, x6) 10.61/3.58 10.61/3.58 +(x1, x2) = +(x1, x2) 10.61/3.58 10.61/3.58 10.61/3.58 10.61/3.58 10.61/3.58 10.61/3.58 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 10.61/3.58 10.61/3.58 10.61/3.58 10.61/3.58 ---------------------------------------- 10.61/3.58 10.61/3.58 (2) 10.61/3.58 Obligation: 10.61/3.58 Pi-finite rewrite system: 10.61/3.58 The TRS R consists of the following rules: 10.61/3.58 10.61/3.58 d_in_gga(X, X, 1) -> d_out_gga(X, X, 1) 10.61/3.58 d_in_gga(T, X1, 0) -> U1_gga(T, X1, isnumber_in_g(T)) 10.61/3.58 isnumber_in_g(0) -> isnumber_out_g(0) 10.61/3.58 isnumber_in_g(s(X)) -> U7_g(X, isnumber_in_g(X)) 10.61/3.58 isnumber_in_g(p(X)) -> U8_g(X, isnumber_in_g(X)) 10.61/3.58 U8_g(X, isnumber_out_g(X)) -> isnumber_out_g(p(X)) 10.61/3.58 U7_g(X, isnumber_out_g(X)) -> isnumber_out_g(s(X)) 10.61/3.58 U1_gga(T, X1, isnumber_out_g(T)) -> d_out_gga(T, X1, 0) 10.61/3.58 d_in_gga(times(U, V), X, +(times(B, U), times(A, V))) -> U2_gga(U, V, X, B, A, d_in_gga(U, X, A)) 10.61/3.58 d_in_gga(div(U, V), X, W) -> U4_gga(U, V, X, W, d_in_gga(times(U, power(V, p(0))), X, W)) 10.61/3.58 d_in_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) -> U5_gga(U, V, X, W, isnumber_in_g(V)) 10.61/3.58 U5_gga(U, V, X, W, isnumber_out_g(V)) -> U6_gga(U, V, X, W, d_in_gga(U, X, W)) 10.61/3.58 U6_gga(U, V, X, W, d_out_gga(U, X, W)) -> d_out_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) 10.61/3.58 U4_gga(U, V, X, W, d_out_gga(times(U, power(V, p(0))), X, W)) -> d_out_gga(div(U, V), X, W) 10.61/3.58 U2_gga(U, V, X, B, A, d_out_gga(U, X, A)) -> U3_gga(U, V, X, B, A, d_in_gga(V, X, B)) 10.61/3.58 U3_gga(U, V, X, B, A, d_out_gga(V, X, B)) -> d_out_gga(times(U, V), X, +(times(B, U), times(A, V))) 10.61/3.58 10.61/3.58 The argument filtering Pi contains the following mapping: 10.61/3.58 d_in_gga(x1, x2, x3) = d_in_gga(x1, x2) 10.61/3.58 10.61/3.58 d_out_gga(x1, x2, x3) = d_out_gga(x1, x2, x3) 10.61/3.58 10.61/3.58 U1_gga(x1, x2, x3) = U1_gga(x1, x2, x3) 10.61/3.58 10.61/3.58 isnumber_in_g(x1) = isnumber_in_g(x1) 10.61/3.58 10.61/3.58 0 = 0 10.61/3.58 10.61/3.58 isnumber_out_g(x1) = isnumber_out_g(x1) 10.61/3.58 10.61/3.58 s(x1) = s(x1) 10.61/3.58 10.61/3.58 U7_g(x1, x2) = U7_g(x1, x2) 10.61/3.58 10.61/3.58 p(x1) = p(x1) 10.61/3.58 10.61/3.58 U8_g(x1, x2) = U8_g(x1, x2) 10.61/3.58 10.61/3.58 times(x1, x2) = times(x1, x2) 10.61/3.58 10.61/3.58 U2_gga(x1, x2, x3, x4, x5, x6) = U2_gga(x1, x2, x3, x6) 10.61/3.58 10.61/3.58 div(x1, x2) = div(x1, x2) 10.61/3.58 10.61/3.58 U4_gga(x1, x2, x3, x4, x5) = U4_gga(x1, x2, x3, x5) 10.61/3.58 10.61/3.58 power(x1, x2) = power(x1, x2) 10.61/3.58 10.61/3.58 U5_gga(x1, x2, x3, x4, x5) = U5_gga(x1, x2, x3, x5) 10.61/3.58 10.61/3.58 U6_gga(x1, x2, x3, x4, x5) = U6_gga(x1, x2, x3, x5) 10.61/3.58 10.61/3.58 U3_gga(x1, x2, x3, x4, x5, x6) = U3_gga(x1, x2, x3, x5, x6) 10.61/3.58 10.61/3.58 +(x1, x2) = +(x1, x2) 10.61/3.58 10.61/3.58 10.61/3.58 10.61/3.58 ---------------------------------------- 10.61/3.58 10.61/3.58 (3) DependencyPairsProof (EQUIVALENT) 10.61/3.58 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 10.61/3.58 Pi DP problem: 10.61/3.58 The TRS P consists of the following rules: 10.61/3.58 10.61/3.58 D_IN_GGA(T, X1, 0) -> U1_GGA(T, X1, isnumber_in_g(T)) 10.61/3.58 D_IN_GGA(T, X1, 0) -> ISNUMBER_IN_G(T) 10.61/3.58 ISNUMBER_IN_G(s(X)) -> U7_G(X, isnumber_in_g(X)) 10.61/3.58 ISNUMBER_IN_G(s(X)) -> ISNUMBER_IN_G(X) 10.61/3.58 ISNUMBER_IN_G(p(X)) -> U8_G(X, isnumber_in_g(X)) 10.61/3.58 ISNUMBER_IN_G(p(X)) -> ISNUMBER_IN_G(X) 10.61/3.58 D_IN_GGA(times(U, V), X, +(times(B, U), times(A, V))) -> U2_GGA(U, V, X, B, A, d_in_gga(U, X, A)) 10.61/3.58 D_IN_GGA(times(U, V), X, +(times(B, U), times(A, V))) -> D_IN_GGA(U, X, A) 10.61/3.58 D_IN_GGA(div(U, V), X, W) -> U4_GGA(U, V, X, W, d_in_gga(times(U, power(V, p(0))), X, W)) 10.61/3.58 D_IN_GGA(div(U, V), X, W) -> D_IN_GGA(times(U, power(V, p(0))), X, W) 10.61/3.58 D_IN_GGA(power(U, V), X, times(V, times(W, power(U, p(V))))) -> U5_GGA(U, V, X, W, isnumber_in_g(V)) 10.61/3.58 D_IN_GGA(power(U, V), X, times(V, times(W, power(U, p(V))))) -> ISNUMBER_IN_G(V) 10.61/3.58 U5_GGA(U, V, X, W, isnumber_out_g(V)) -> U6_GGA(U, V, X, W, d_in_gga(U, X, W)) 10.61/3.58 U5_GGA(U, V, X, W, isnumber_out_g(V)) -> D_IN_GGA(U, X, W) 10.61/3.58 U2_GGA(U, V, X, B, A, d_out_gga(U, X, A)) -> U3_GGA(U, V, X, B, A, d_in_gga(V, X, B)) 10.61/3.58 U2_GGA(U, V, X, B, A, d_out_gga(U, X, A)) -> D_IN_GGA(V, X, B) 10.61/3.58 10.61/3.58 The TRS R consists of the following rules: 10.61/3.58 10.61/3.58 d_in_gga(X, X, 1) -> d_out_gga(X, X, 1) 10.61/3.58 d_in_gga(T, X1, 0) -> U1_gga(T, X1, isnumber_in_g(T)) 10.61/3.58 isnumber_in_g(0) -> isnumber_out_g(0) 10.61/3.58 isnumber_in_g(s(X)) -> U7_g(X, isnumber_in_g(X)) 10.61/3.58 isnumber_in_g(p(X)) -> U8_g(X, isnumber_in_g(X)) 10.61/3.58 U8_g(X, isnumber_out_g(X)) -> isnumber_out_g(p(X)) 10.61/3.58 U7_g(X, isnumber_out_g(X)) -> isnumber_out_g(s(X)) 10.61/3.58 U1_gga(T, X1, isnumber_out_g(T)) -> d_out_gga(T, X1, 0) 10.61/3.58 d_in_gga(times(U, V), X, +(times(B, U), times(A, V))) -> U2_gga(U, V, X, B, A, d_in_gga(U, X, A)) 10.61/3.58 d_in_gga(div(U, V), X, W) -> U4_gga(U, V, X, W, d_in_gga(times(U, power(V, p(0))), X, W)) 10.61/3.58 d_in_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) -> U5_gga(U, V, X, W, isnumber_in_g(V)) 10.61/3.58 U5_gga(U, V, X, W, isnumber_out_g(V)) -> U6_gga(U, V, X, W, d_in_gga(U, X, W)) 10.61/3.58 U6_gga(U, V, X, W, d_out_gga(U, X, W)) -> d_out_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) 10.61/3.58 U4_gga(U, V, X, W, d_out_gga(times(U, power(V, p(0))), X, W)) -> d_out_gga(div(U, V), X, W) 10.61/3.59 U2_gga(U, V, X, B, A, d_out_gga(U, X, A)) -> U3_gga(U, V, X, B, A, d_in_gga(V, X, B)) 10.61/3.59 U3_gga(U, V, X, B, A, d_out_gga(V, X, B)) -> d_out_gga(times(U, V), X, +(times(B, U), times(A, V))) 10.61/3.59 10.61/3.59 The argument filtering Pi contains the following mapping: 10.61/3.59 d_in_gga(x1, x2, x3) = d_in_gga(x1, x2) 10.61/3.59 10.61/3.59 d_out_gga(x1, x2, x3) = d_out_gga(x1, x2, x3) 10.61/3.59 10.61/3.59 U1_gga(x1, x2, x3) = U1_gga(x1, x2, x3) 10.61/3.59 10.61/3.59 isnumber_in_g(x1) = isnumber_in_g(x1) 10.61/3.59 10.61/3.59 0 = 0 10.61/3.59 10.61/3.59 isnumber_out_g(x1) = isnumber_out_g(x1) 10.61/3.59 10.61/3.59 s(x1) = s(x1) 10.61/3.59 10.61/3.59 U7_g(x1, x2) = U7_g(x1, x2) 10.61/3.59 10.61/3.59 p(x1) = p(x1) 10.61/3.59 10.61/3.59 U8_g(x1, x2) = U8_g(x1, x2) 10.61/3.59 10.61/3.59 times(x1, x2) = times(x1, x2) 10.61/3.59 10.61/3.59 U2_gga(x1, x2, x3, x4, x5, x6) = U2_gga(x1, x2, x3, x6) 10.61/3.59 10.61/3.59 div(x1, x2) = div(x1, x2) 10.61/3.59 10.61/3.59 U4_gga(x1, x2, x3, x4, x5) = U4_gga(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 power(x1, x2) = power(x1, x2) 10.61/3.59 10.61/3.59 U5_gga(x1, x2, x3, x4, x5) = U5_gga(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 U6_gga(x1, x2, x3, x4, x5) = U6_gga(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 U3_gga(x1, x2, x3, x4, x5, x6) = U3_gga(x1, x2, x3, x5, x6) 10.61/3.59 10.61/3.59 +(x1, x2) = +(x1, x2) 10.61/3.59 10.61/3.59 D_IN_GGA(x1, x2, x3) = D_IN_GGA(x1, x2) 10.61/3.59 10.61/3.59 U1_GGA(x1, x2, x3) = U1_GGA(x1, x2, x3) 10.61/3.59 10.61/3.59 ISNUMBER_IN_G(x1) = ISNUMBER_IN_G(x1) 10.61/3.59 10.61/3.59 U7_G(x1, x2) = U7_G(x1, x2) 10.61/3.59 10.61/3.59 U8_G(x1, x2) = U8_G(x1, x2) 10.61/3.59 10.61/3.59 U2_GGA(x1, x2, x3, x4, x5, x6) = U2_GGA(x1, x2, x3, x6) 10.61/3.59 10.61/3.59 U4_GGA(x1, x2, x3, x4, x5) = U4_GGA(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 U5_GGA(x1, x2, x3, x4, x5) = U5_GGA(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 U6_GGA(x1, x2, x3, x4, x5) = U6_GGA(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 U3_GGA(x1, x2, x3, x4, x5, x6) = U3_GGA(x1, x2, x3, x5, x6) 10.61/3.59 10.61/3.59 10.61/3.59 We have to consider all (P,R,Pi)-chains 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (4) 10.61/3.59 Obligation: 10.61/3.59 Pi DP problem: 10.61/3.59 The TRS P consists of the following rules: 10.61/3.59 10.61/3.59 D_IN_GGA(T, X1, 0) -> U1_GGA(T, X1, isnumber_in_g(T)) 10.61/3.59 D_IN_GGA(T, X1, 0) -> ISNUMBER_IN_G(T) 10.61/3.59 ISNUMBER_IN_G(s(X)) -> U7_G(X, isnumber_in_g(X)) 10.61/3.59 ISNUMBER_IN_G(s(X)) -> ISNUMBER_IN_G(X) 10.61/3.59 ISNUMBER_IN_G(p(X)) -> U8_G(X, isnumber_in_g(X)) 10.61/3.59 ISNUMBER_IN_G(p(X)) -> ISNUMBER_IN_G(X) 10.61/3.59 D_IN_GGA(times(U, V), X, +(times(B, U), times(A, V))) -> U2_GGA(U, V, X, B, A, d_in_gga(U, X, A)) 10.61/3.59 D_IN_GGA(times(U, V), X, +(times(B, U), times(A, V))) -> D_IN_GGA(U, X, A) 10.61/3.59 D_IN_GGA(div(U, V), X, W) -> U4_GGA(U, V, X, W, d_in_gga(times(U, power(V, p(0))), X, W)) 10.61/3.59 D_IN_GGA(div(U, V), X, W) -> D_IN_GGA(times(U, power(V, p(0))), X, W) 10.61/3.59 D_IN_GGA(power(U, V), X, times(V, times(W, power(U, p(V))))) -> U5_GGA(U, V, X, W, isnumber_in_g(V)) 10.61/3.59 D_IN_GGA(power(U, V), X, times(V, times(W, power(U, p(V))))) -> ISNUMBER_IN_G(V) 10.61/3.59 U5_GGA(U, V, X, W, isnumber_out_g(V)) -> U6_GGA(U, V, X, W, d_in_gga(U, X, W)) 10.61/3.59 U5_GGA(U, V, X, W, isnumber_out_g(V)) -> D_IN_GGA(U, X, W) 10.61/3.59 U2_GGA(U, V, X, B, A, d_out_gga(U, X, A)) -> U3_GGA(U, V, X, B, A, d_in_gga(V, X, B)) 10.61/3.59 U2_GGA(U, V, X, B, A, d_out_gga(U, X, A)) -> D_IN_GGA(V, X, B) 10.61/3.59 10.61/3.59 The TRS R consists of the following rules: 10.61/3.59 10.61/3.59 d_in_gga(X, X, 1) -> d_out_gga(X, X, 1) 10.61/3.59 d_in_gga(T, X1, 0) -> U1_gga(T, X1, isnumber_in_g(T)) 10.61/3.59 isnumber_in_g(0) -> isnumber_out_g(0) 10.61/3.59 isnumber_in_g(s(X)) -> U7_g(X, isnumber_in_g(X)) 10.61/3.59 isnumber_in_g(p(X)) -> U8_g(X, isnumber_in_g(X)) 10.61/3.59 U8_g(X, isnumber_out_g(X)) -> isnumber_out_g(p(X)) 10.61/3.59 U7_g(X, isnumber_out_g(X)) -> isnumber_out_g(s(X)) 10.61/3.59 U1_gga(T, X1, isnumber_out_g(T)) -> d_out_gga(T, X1, 0) 10.61/3.59 d_in_gga(times(U, V), X, +(times(B, U), times(A, V))) -> U2_gga(U, V, X, B, A, d_in_gga(U, X, A)) 10.61/3.59 d_in_gga(div(U, V), X, W) -> U4_gga(U, V, X, W, d_in_gga(times(U, power(V, p(0))), X, W)) 10.61/3.59 d_in_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) -> U5_gga(U, V, X, W, isnumber_in_g(V)) 10.61/3.59 U5_gga(U, V, X, W, isnumber_out_g(V)) -> U6_gga(U, V, X, W, d_in_gga(U, X, W)) 10.61/3.59 U6_gga(U, V, X, W, d_out_gga(U, X, W)) -> d_out_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) 10.61/3.59 U4_gga(U, V, X, W, d_out_gga(times(U, power(V, p(0))), X, W)) -> d_out_gga(div(U, V), X, W) 10.61/3.59 U2_gga(U, V, X, B, A, d_out_gga(U, X, A)) -> U3_gga(U, V, X, B, A, d_in_gga(V, X, B)) 10.61/3.59 U3_gga(U, V, X, B, A, d_out_gga(V, X, B)) -> d_out_gga(times(U, V), X, +(times(B, U), times(A, V))) 10.61/3.59 10.61/3.59 The argument filtering Pi contains the following mapping: 10.61/3.59 d_in_gga(x1, x2, x3) = d_in_gga(x1, x2) 10.61/3.59 10.61/3.59 d_out_gga(x1, x2, x3) = d_out_gga(x1, x2, x3) 10.61/3.59 10.61/3.59 U1_gga(x1, x2, x3) = U1_gga(x1, x2, x3) 10.61/3.59 10.61/3.59 isnumber_in_g(x1) = isnumber_in_g(x1) 10.61/3.59 10.61/3.59 0 = 0 10.61/3.59 10.61/3.59 isnumber_out_g(x1) = isnumber_out_g(x1) 10.61/3.59 10.61/3.59 s(x1) = s(x1) 10.61/3.59 10.61/3.59 U7_g(x1, x2) = U7_g(x1, x2) 10.61/3.59 10.61/3.59 p(x1) = p(x1) 10.61/3.59 10.61/3.59 U8_g(x1, x2) = U8_g(x1, x2) 10.61/3.59 10.61/3.59 times(x1, x2) = times(x1, x2) 10.61/3.59 10.61/3.59 U2_gga(x1, x2, x3, x4, x5, x6) = U2_gga(x1, x2, x3, x6) 10.61/3.59 10.61/3.59 div(x1, x2) = div(x1, x2) 10.61/3.59 10.61/3.59 U4_gga(x1, x2, x3, x4, x5) = U4_gga(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 power(x1, x2) = power(x1, x2) 10.61/3.59 10.61/3.59 U5_gga(x1, x2, x3, x4, x5) = U5_gga(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 U6_gga(x1, x2, x3, x4, x5) = U6_gga(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 U3_gga(x1, x2, x3, x4, x5, x6) = U3_gga(x1, x2, x3, x5, x6) 10.61/3.59 10.61/3.59 +(x1, x2) = +(x1, x2) 10.61/3.59 10.61/3.59 D_IN_GGA(x1, x2, x3) = D_IN_GGA(x1, x2) 10.61/3.59 10.61/3.59 U1_GGA(x1, x2, x3) = U1_GGA(x1, x2, x3) 10.61/3.59 10.61/3.59 ISNUMBER_IN_G(x1) = ISNUMBER_IN_G(x1) 10.61/3.59 10.61/3.59 U7_G(x1, x2) = U7_G(x1, x2) 10.61/3.59 10.61/3.59 U8_G(x1, x2) = U8_G(x1, x2) 10.61/3.59 10.61/3.59 U2_GGA(x1, x2, x3, x4, x5, x6) = U2_GGA(x1, x2, x3, x6) 10.61/3.59 10.61/3.59 U4_GGA(x1, x2, x3, x4, x5) = U4_GGA(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 U5_GGA(x1, x2, x3, x4, x5) = U5_GGA(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 U6_GGA(x1, x2, x3, x4, x5) = U6_GGA(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 U3_GGA(x1, x2, x3, x4, x5, x6) = U3_GGA(x1, x2, x3, x5, x6) 10.61/3.59 10.61/3.59 10.61/3.59 We have to consider all (P,R,Pi)-chains 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (5) DependencyGraphProof (EQUIVALENT) 10.61/3.59 The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 8 less nodes. 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (6) 10.61/3.59 Complex Obligation (AND) 10.61/3.59 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (7) 10.61/3.59 Obligation: 10.61/3.59 Pi DP problem: 10.61/3.59 The TRS P consists of the following rules: 10.61/3.59 10.61/3.59 ISNUMBER_IN_G(p(X)) -> ISNUMBER_IN_G(X) 10.61/3.59 ISNUMBER_IN_G(s(X)) -> ISNUMBER_IN_G(X) 10.61/3.59 10.61/3.59 The TRS R consists of the following rules: 10.61/3.59 10.61/3.59 d_in_gga(X, X, 1) -> d_out_gga(X, X, 1) 10.61/3.59 d_in_gga(T, X1, 0) -> U1_gga(T, X1, isnumber_in_g(T)) 10.61/3.59 isnumber_in_g(0) -> isnumber_out_g(0) 10.61/3.59 isnumber_in_g(s(X)) -> U7_g(X, isnumber_in_g(X)) 10.61/3.59 isnumber_in_g(p(X)) -> U8_g(X, isnumber_in_g(X)) 10.61/3.59 U8_g(X, isnumber_out_g(X)) -> isnumber_out_g(p(X)) 10.61/3.59 U7_g(X, isnumber_out_g(X)) -> isnumber_out_g(s(X)) 10.61/3.59 U1_gga(T, X1, isnumber_out_g(T)) -> d_out_gga(T, X1, 0) 10.61/3.59 d_in_gga(times(U, V), X, +(times(B, U), times(A, V))) -> U2_gga(U, V, X, B, A, d_in_gga(U, X, A)) 10.61/3.59 d_in_gga(div(U, V), X, W) -> U4_gga(U, V, X, W, d_in_gga(times(U, power(V, p(0))), X, W)) 10.61/3.59 d_in_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) -> U5_gga(U, V, X, W, isnumber_in_g(V)) 10.61/3.59 U5_gga(U, V, X, W, isnumber_out_g(V)) -> U6_gga(U, V, X, W, d_in_gga(U, X, W)) 10.61/3.59 U6_gga(U, V, X, W, d_out_gga(U, X, W)) -> d_out_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) 10.61/3.59 U4_gga(U, V, X, W, d_out_gga(times(U, power(V, p(0))), X, W)) -> d_out_gga(div(U, V), X, W) 10.61/3.59 U2_gga(U, V, X, B, A, d_out_gga(U, X, A)) -> U3_gga(U, V, X, B, A, d_in_gga(V, X, B)) 10.61/3.59 U3_gga(U, V, X, B, A, d_out_gga(V, X, B)) -> d_out_gga(times(U, V), X, +(times(B, U), times(A, V))) 10.61/3.59 10.61/3.59 The argument filtering Pi contains the following mapping: 10.61/3.59 d_in_gga(x1, x2, x3) = d_in_gga(x1, x2) 10.61/3.59 10.61/3.59 d_out_gga(x1, x2, x3) = d_out_gga(x1, x2, x3) 10.61/3.59 10.61/3.59 U1_gga(x1, x2, x3) = U1_gga(x1, x2, x3) 10.61/3.59 10.61/3.59 isnumber_in_g(x1) = isnumber_in_g(x1) 10.61/3.59 10.61/3.59 0 = 0 10.61/3.59 10.61/3.59 isnumber_out_g(x1) = isnumber_out_g(x1) 10.61/3.59 10.61/3.59 s(x1) = s(x1) 10.61/3.59 10.61/3.59 U7_g(x1, x2) = U7_g(x1, x2) 10.61/3.59 10.61/3.59 p(x1) = p(x1) 10.61/3.59 10.61/3.59 U8_g(x1, x2) = U8_g(x1, x2) 10.61/3.59 10.61/3.59 times(x1, x2) = times(x1, x2) 10.61/3.59 10.61/3.59 U2_gga(x1, x2, x3, x4, x5, x6) = U2_gga(x1, x2, x3, x6) 10.61/3.59 10.61/3.59 div(x1, x2) = div(x1, x2) 10.61/3.59 10.61/3.59 U4_gga(x1, x2, x3, x4, x5) = U4_gga(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 power(x1, x2) = power(x1, x2) 10.61/3.59 10.61/3.59 U5_gga(x1, x2, x3, x4, x5) = U5_gga(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 U6_gga(x1, x2, x3, x4, x5) = U6_gga(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 U3_gga(x1, x2, x3, x4, x5, x6) = U3_gga(x1, x2, x3, x5, x6) 10.61/3.59 10.61/3.59 +(x1, x2) = +(x1, x2) 10.61/3.59 10.61/3.59 ISNUMBER_IN_G(x1) = ISNUMBER_IN_G(x1) 10.61/3.59 10.61/3.59 10.61/3.59 We have to consider all (P,R,Pi)-chains 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (8) UsableRulesProof (EQUIVALENT) 10.61/3.59 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (9) 10.61/3.59 Obligation: 10.61/3.59 Pi DP problem: 10.61/3.59 The TRS P consists of the following rules: 10.61/3.59 10.61/3.59 ISNUMBER_IN_G(p(X)) -> ISNUMBER_IN_G(X) 10.61/3.59 ISNUMBER_IN_G(s(X)) -> ISNUMBER_IN_G(X) 10.61/3.59 10.61/3.59 R is empty. 10.61/3.59 Pi is empty. 10.61/3.59 We have to consider all (P,R,Pi)-chains 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (10) PiDPToQDPProof (EQUIVALENT) 10.61/3.59 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (11) 10.61/3.59 Obligation: 10.61/3.59 Q DP problem: 10.61/3.59 The TRS P consists of the following rules: 10.61/3.59 10.61/3.59 ISNUMBER_IN_G(p(X)) -> ISNUMBER_IN_G(X) 10.61/3.59 ISNUMBER_IN_G(s(X)) -> ISNUMBER_IN_G(X) 10.61/3.59 10.61/3.59 R is empty. 10.61/3.59 Q is empty. 10.61/3.59 We have to consider all (P,Q,R)-chains. 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (12) QDPSizeChangeProof (EQUIVALENT) 10.61/3.59 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 10.61/3.59 10.61/3.59 From the DPs we obtained the following set of size-change graphs: 10.61/3.59 *ISNUMBER_IN_G(p(X)) -> ISNUMBER_IN_G(X) 10.61/3.59 The graph contains the following edges 1 > 1 10.61/3.59 10.61/3.59 10.61/3.59 *ISNUMBER_IN_G(s(X)) -> ISNUMBER_IN_G(X) 10.61/3.59 The graph contains the following edges 1 > 1 10.61/3.59 10.61/3.59 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (13) 10.61/3.59 YES 10.61/3.59 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (14) 10.61/3.59 Obligation: 10.61/3.59 Pi DP problem: 10.61/3.59 The TRS P consists of the following rules: 10.61/3.59 10.61/3.59 D_IN_GGA(times(U, V), X, +(times(B, U), times(A, V))) -> U2_GGA(U, V, X, B, A, d_in_gga(U, X, A)) 10.61/3.59 U2_GGA(U, V, X, B, A, d_out_gga(U, X, A)) -> D_IN_GGA(V, X, B) 10.61/3.59 D_IN_GGA(times(U, V), X, +(times(B, U), times(A, V))) -> D_IN_GGA(U, X, A) 10.61/3.59 D_IN_GGA(div(U, V), X, W) -> D_IN_GGA(times(U, power(V, p(0))), X, W) 10.61/3.59 D_IN_GGA(power(U, V), X, times(V, times(W, power(U, p(V))))) -> U5_GGA(U, V, X, W, isnumber_in_g(V)) 10.61/3.59 U5_GGA(U, V, X, W, isnumber_out_g(V)) -> D_IN_GGA(U, X, W) 10.61/3.59 10.61/3.59 The TRS R consists of the following rules: 10.61/3.59 10.61/3.59 d_in_gga(X, X, 1) -> d_out_gga(X, X, 1) 10.61/3.59 d_in_gga(T, X1, 0) -> U1_gga(T, X1, isnumber_in_g(T)) 10.61/3.59 isnumber_in_g(0) -> isnumber_out_g(0) 10.61/3.59 isnumber_in_g(s(X)) -> U7_g(X, isnumber_in_g(X)) 10.61/3.59 isnumber_in_g(p(X)) -> U8_g(X, isnumber_in_g(X)) 10.61/3.59 U8_g(X, isnumber_out_g(X)) -> isnumber_out_g(p(X)) 10.61/3.59 U7_g(X, isnumber_out_g(X)) -> isnumber_out_g(s(X)) 10.61/3.59 U1_gga(T, X1, isnumber_out_g(T)) -> d_out_gga(T, X1, 0) 10.61/3.59 d_in_gga(times(U, V), X, +(times(B, U), times(A, V))) -> U2_gga(U, V, X, B, A, d_in_gga(U, X, A)) 10.61/3.59 d_in_gga(div(U, V), X, W) -> U4_gga(U, V, X, W, d_in_gga(times(U, power(V, p(0))), X, W)) 10.61/3.59 d_in_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) -> U5_gga(U, V, X, W, isnumber_in_g(V)) 10.61/3.59 U5_gga(U, V, X, W, isnumber_out_g(V)) -> U6_gga(U, V, X, W, d_in_gga(U, X, W)) 10.61/3.59 U6_gga(U, V, X, W, d_out_gga(U, X, W)) -> d_out_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) 10.61/3.59 U4_gga(U, V, X, W, d_out_gga(times(U, power(V, p(0))), X, W)) -> d_out_gga(div(U, V), X, W) 10.61/3.59 U2_gga(U, V, X, B, A, d_out_gga(U, X, A)) -> U3_gga(U, V, X, B, A, d_in_gga(V, X, B)) 10.61/3.59 U3_gga(U, V, X, B, A, d_out_gga(V, X, B)) -> d_out_gga(times(U, V), X, +(times(B, U), times(A, V))) 10.61/3.59 10.61/3.59 The argument filtering Pi contains the following mapping: 10.61/3.59 d_in_gga(x1, x2, x3) = d_in_gga(x1, x2) 10.61/3.59 10.61/3.59 d_out_gga(x1, x2, x3) = d_out_gga(x1, x2, x3) 10.61/3.59 10.61/3.59 U1_gga(x1, x2, x3) = U1_gga(x1, x2, x3) 10.61/3.59 10.61/3.59 isnumber_in_g(x1) = isnumber_in_g(x1) 10.61/3.59 10.61/3.59 0 = 0 10.61/3.59 10.61/3.59 isnumber_out_g(x1) = isnumber_out_g(x1) 10.61/3.59 10.61/3.59 s(x1) = s(x1) 10.61/3.59 10.61/3.59 U7_g(x1, x2) = U7_g(x1, x2) 10.61/3.59 10.61/3.59 p(x1) = p(x1) 10.61/3.59 10.61/3.59 U8_g(x1, x2) = U8_g(x1, x2) 10.61/3.59 10.61/3.59 times(x1, x2) = times(x1, x2) 10.61/3.59 10.61/3.59 U2_gga(x1, x2, x3, x4, x5, x6) = U2_gga(x1, x2, x3, x6) 10.61/3.59 10.61/3.59 div(x1, x2) = div(x1, x2) 10.61/3.59 10.61/3.59 U4_gga(x1, x2, x3, x4, x5) = U4_gga(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 power(x1, x2) = power(x1, x2) 10.61/3.59 10.61/3.59 U5_gga(x1, x2, x3, x4, x5) = U5_gga(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 U6_gga(x1, x2, x3, x4, x5) = U6_gga(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 U3_gga(x1, x2, x3, x4, x5, x6) = U3_gga(x1, x2, x3, x5, x6) 10.61/3.59 10.61/3.59 +(x1, x2) = +(x1, x2) 10.61/3.59 10.61/3.59 D_IN_GGA(x1, x2, x3) = D_IN_GGA(x1, x2) 10.61/3.59 10.61/3.59 U2_GGA(x1, x2, x3, x4, x5, x6) = U2_GGA(x1, x2, x3, x6) 10.61/3.59 10.61/3.59 U5_GGA(x1, x2, x3, x4, x5) = U5_GGA(x1, x2, x3, x5) 10.61/3.59 10.61/3.59 10.61/3.59 We have to consider all (P,R,Pi)-chains 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (15) PiDPToQDPProof (SOUND) 10.61/3.59 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (16) 10.61/3.59 Obligation: 10.61/3.59 Q DP problem: 10.61/3.59 The TRS P consists of the following rules: 10.61/3.59 10.61/3.59 D_IN_GGA(times(U, V), X) -> U2_GGA(U, V, X, d_in_gga(U, X)) 10.61/3.59 U2_GGA(U, V, X, d_out_gga(U, X, A)) -> D_IN_GGA(V, X) 10.61/3.59 D_IN_GGA(times(U, V), X) -> D_IN_GGA(U, X) 10.61/3.59 D_IN_GGA(div(U, V), X) -> D_IN_GGA(times(U, power(V, p(0))), X) 10.61/3.59 D_IN_GGA(power(U, V), X) -> U5_GGA(U, V, X, isnumber_in_g(V)) 10.61/3.59 U5_GGA(U, V, X, isnumber_out_g(V)) -> D_IN_GGA(U, X) 10.61/3.59 10.61/3.59 The TRS R consists of the following rules: 10.61/3.59 10.61/3.59 d_in_gga(X, X) -> d_out_gga(X, X, 1) 10.61/3.59 d_in_gga(T, X1) -> U1_gga(T, X1, isnumber_in_g(T)) 10.61/3.59 isnumber_in_g(0) -> isnumber_out_g(0) 10.61/3.59 isnumber_in_g(s(X)) -> U7_g(X, isnumber_in_g(X)) 10.61/3.59 isnumber_in_g(p(X)) -> U8_g(X, isnumber_in_g(X)) 10.61/3.59 U8_g(X, isnumber_out_g(X)) -> isnumber_out_g(p(X)) 10.61/3.59 U7_g(X, isnumber_out_g(X)) -> isnumber_out_g(s(X)) 10.61/3.59 U1_gga(T, X1, isnumber_out_g(T)) -> d_out_gga(T, X1, 0) 10.61/3.59 d_in_gga(times(U, V), X) -> U2_gga(U, V, X, d_in_gga(U, X)) 10.61/3.59 d_in_gga(div(U, V), X) -> U4_gga(U, V, X, d_in_gga(times(U, power(V, p(0))), X)) 10.61/3.59 d_in_gga(power(U, V), X) -> U5_gga(U, V, X, isnumber_in_g(V)) 10.61/3.59 U5_gga(U, V, X, isnumber_out_g(V)) -> U6_gga(U, V, X, d_in_gga(U, X)) 10.61/3.59 U6_gga(U, V, X, d_out_gga(U, X, W)) -> d_out_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) 10.61/3.59 U4_gga(U, V, X, d_out_gga(times(U, power(V, p(0))), X, W)) -> d_out_gga(div(U, V), X, W) 10.61/3.59 U2_gga(U, V, X, d_out_gga(U, X, A)) -> U3_gga(U, V, X, A, d_in_gga(V, X)) 10.61/3.59 U3_gga(U, V, X, A, d_out_gga(V, X, B)) -> d_out_gga(times(U, V), X, +(times(B, U), times(A, V))) 10.61/3.59 10.61/3.59 The set Q consists of the following terms: 10.61/3.59 10.61/3.59 d_in_gga(x0, x1) 10.61/3.59 isnumber_in_g(x0) 10.61/3.59 U8_g(x0, x1) 10.61/3.59 U7_g(x0, x1) 10.61/3.59 U1_gga(x0, x1, x2) 10.61/3.59 U5_gga(x0, x1, x2, x3) 10.61/3.59 U6_gga(x0, x1, x2, x3) 10.61/3.59 U4_gga(x0, x1, x2, x3) 10.61/3.59 U2_gga(x0, x1, x2, x3) 10.61/3.59 U3_gga(x0, x1, x2, x3, x4) 10.61/3.59 10.61/3.59 We have to consider all (P,Q,R)-chains. 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (17) QDPQMonotonicMRRProof (EQUIVALENT) 10.61/3.59 By using the Q-monotonic rule removal processor with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented such that it always occurs at a strongly monotonic position in a (P,Q,R)-chain. 10.61/3.59 10.61/3.59 Strictly oriented dependency pairs: 10.61/3.59 10.61/3.59 D_IN_GGA(power(U, V), X) -> U5_GGA(U, V, X, isnumber_in_g(V)) 10.61/3.59 U5_GGA(U, V, X, isnumber_out_g(V)) -> D_IN_GGA(U, X) 10.61/3.59 10.61/3.59 10.61/3.59 Used ordering: Polynomial interpretation [POLO]: 10.61/3.59 10.61/3.59 POL(+(x_1, x_2)) = 2 10.61/3.59 POL(0) = 0 10.61/3.59 POL(1) = 2 10.61/3.59 POL(D_IN_GGA(x_1, x_2)) = 2*x_1 10.61/3.59 POL(U1_gga(x_1, x_2, x_3)) = 1 10.61/3.59 POL(U2_GGA(x_1, x_2, x_3, x_4)) = 2*x_2 10.61/3.59 POL(U2_gga(x_1, x_2, x_3, x_4)) = 1 10.61/3.59 POL(U3_gga(x_1, x_2, x_3, x_4, x_5)) = 1 10.61/3.59 POL(U4_gga(x_1, x_2, x_3, x_4)) = 2 10.61/3.59 POL(U5_GGA(x_1, x_2, x_3, x_4)) = 2 + 2*x_1 10.61/3.59 POL(U5_gga(x_1, x_2, x_3, x_4)) = 0 10.61/3.59 POL(U6_gga(x_1, x_2, x_3, x_4)) = 0 10.61/3.59 POL(U7_g(x_1, x_2)) = 1 10.61/3.59 POL(U8_g(x_1, x_2)) = 2 10.61/3.59 POL(d_in_gga(x_1, x_2)) = 2 10.61/3.59 POL(d_out_gga(x_1, x_2, x_3)) = 0 10.61/3.59 POL(div(x_1, x_2)) = 2 + 2*x_1 + 2*x_2 10.61/3.59 POL(isnumber_in_g(x_1)) = 2 + x_1 10.61/3.59 POL(isnumber_out_g(x_1)) = 0 10.61/3.59 POL(p(x_1)) = 0 10.61/3.59 POL(power(x_1, x_2)) = 2 + 2*x_1 + x_2 10.61/3.59 POL(s(x_1)) = 2*x_1 10.61/3.59 POL(times(x_1, x_2)) = 2*x_1 + x_2 10.61/3.59 10.61/3.59 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (18) 10.61/3.59 Obligation: 10.61/3.59 Q DP problem: 10.61/3.59 The TRS P consists of the following rules: 10.61/3.59 10.61/3.59 D_IN_GGA(times(U, V), X) -> U2_GGA(U, V, X, d_in_gga(U, X)) 10.61/3.59 U2_GGA(U, V, X, d_out_gga(U, X, A)) -> D_IN_GGA(V, X) 10.61/3.59 D_IN_GGA(times(U, V), X) -> D_IN_GGA(U, X) 10.61/3.59 D_IN_GGA(div(U, V), X) -> D_IN_GGA(times(U, power(V, p(0))), X) 10.61/3.59 10.61/3.59 The TRS R consists of the following rules: 10.61/3.59 10.61/3.59 d_in_gga(X, X) -> d_out_gga(X, X, 1) 10.61/3.59 d_in_gga(T, X1) -> U1_gga(T, X1, isnumber_in_g(T)) 10.61/3.59 isnumber_in_g(0) -> isnumber_out_g(0) 10.61/3.59 isnumber_in_g(s(X)) -> U7_g(X, isnumber_in_g(X)) 10.61/3.59 isnumber_in_g(p(X)) -> U8_g(X, isnumber_in_g(X)) 10.61/3.59 U8_g(X, isnumber_out_g(X)) -> isnumber_out_g(p(X)) 10.61/3.59 U7_g(X, isnumber_out_g(X)) -> isnumber_out_g(s(X)) 10.61/3.59 U1_gga(T, X1, isnumber_out_g(T)) -> d_out_gga(T, X1, 0) 10.61/3.59 d_in_gga(times(U, V), X) -> U2_gga(U, V, X, d_in_gga(U, X)) 10.61/3.59 d_in_gga(div(U, V), X) -> U4_gga(U, V, X, d_in_gga(times(U, power(V, p(0))), X)) 10.61/3.59 d_in_gga(power(U, V), X) -> U5_gga(U, V, X, isnumber_in_g(V)) 10.61/3.59 U5_gga(U, V, X, isnumber_out_g(V)) -> U6_gga(U, V, X, d_in_gga(U, X)) 10.61/3.59 U6_gga(U, V, X, d_out_gga(U, X, W)) -> d_out_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) 10.61/3.59 U4_gga(U, V, X, d_out_gga(times(U, power(V, p(0))), X, W)) -> d_out_gga(div(U, V), X, W) 10.61/3.59 U2_gga(U, V, X, d_out_gga(U, X, A)) -> U3_gga(U, V, X, A, d_in_gga(V, X)) 10.61/3.59 U3_gga(U, V, X, A, d_out_gga(V, X, B)) -> d_out_gga(times(U, V), X, +(times(B, U), times(A, V))) 10.61/3.59 10.61/3.59 The set Q consists of the following terms: 10.61/3.59 10.61/3.59 d_in_gga(x0, x1) 10.61/3.59 isnumber_in_g(x0) 10.61/3.59 U8_g(x0, x1) 10.61/3.59 U7_g(x0, x1) 10.61/3.59 U1_gga(x0, x1, x2) 10.61/3.59 U5_gga(x0, x1, x2, x3) 10.61/3.59 U6_gga(x0, x1, x2, x3) 10.61/3.59 U4_gga(x0, x1, x2, x3) 10.61/3.59 U2_gga(x0, x1, x2, x3) 10.61/3.59 U3_gga(x0, x1, x2, x3, x4) 10.61/3.59 10.61/3.59 We have to consider all (P,Q,R)-chains. 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (19) QDPQMonotonicMRRProof (EQUIVALENT) 10.61/3.59 By using the Q-monotonic rule removal processor with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented such that it always occurs at a strongly monotonic position in a (P,Q,R)-chain. 10.61/3.59 10.61/3.59 Strictly oriented dependency pairs: 10.61/3.59 10.61/3.59 D_IN_GGA(div(U, V), X) -> D_IN_GGA(times(U, power(V, p(0))), X) 10.61/3.59 10.61/3.59 10.61/3.59 Used ordering: Polynomial interpretation [POLO]: 10.61/3.59 10.61/3.59 POL(+(x_1, x_2)) = 2 10.61/3.59 POL(0) = 1 10.61/3.59 POL(1) = 2 10.61/3.59 POL(D_IN_GGA(x_1, x_2)) = 2*x_1 10.61/3.59 POL(U1_gga(x_1, x_2, x_3)) = 2 10.61/3.59 POL(U2_GGA(x_1, x_2, x_3, x_4)) = 2*x_2 10.61/3.59 POL(U2_gga(x_1, x_2, x_3, x_4)) = 1 10.61/3.59 POL(U3_gga(x_1, x_2, x_3, x_4, x_5)) = 1 10.61/3.59 POL(U4_gga(x_1, x_2, x_3, x_4)) = 2 + x_2 10.61/3.59 POL(U5_gga(x_1, x_2, x_3, x_4)) = 2 10.61/3.59 POL(U6_gga(x_1, x_2, x_3, x_4)) = 2 10.61/3.59 POL(U7_g(x_1, x_2)) = 2 10.61/3.59 POL(U8_g(x_1, x_2)) = 0 10.61/3.59 POL(d_in_gga(x_1, x_2)) = 2 + x_1 10.61/3.59 POL(d_out_gga(x_1, x_2, x_3)) = 0 10.61/3.59 POL(div(x_1, x_2)) = 1 + 2*x_1 + 2*x_2 10.61/3.59 POL(isnumber_in_g(x_1)) = 2*x_1 10.61/3.59 POL(isnumber_out_g(x_1)) = 0 10.61/3.59 POL(p(x_1)) = 0 10.61/3.59 POL(power(x_1, x_2)) = 2*x_2 10.61/3.59 POL(s(x_1)) = 1 + 2*x_1 10.61/3.59 POL(times(x_1, x_2)) = 2*x_1 + 2*x_2 10.61/3.59 10.61/3.59 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (20) 10.61/3.59 Obligation: 10.61/3.59 Q DP problem: 10.61/3.59 The TRS P consists of the following rules: 10.61/3.59 10.61/3.59 D_IN_GGA(times(U, V), X) -> U2_GGA(U, V, X, d_in_gga(U, X)) 10.61/3.59 U2_GGA(U, V, X, d_out_gga(U, X, A)) -> D_IN_GGA(V, X) 10.61/3.59 D_IN_GGA(times(U, V), X) -> D_IN_GGA(U, X) 10.61/3.59 10.61/3.59 The TRS R consists of the following rules: 10.61/3.59 10.61/3.59 d_in_gga(X, X) -> d_out_gga(X, X, 1) 10.61/3.59 d_in_gga(T, X1) -> U1_gga(T, X1, isnumber_in_g(T)) 10.61/3.59 isnumber_in_g(0) -> isnumber_out_g(0) 10.61/3.59 isnumber_in_g(s(X)) -> U7_g(X, isnumber_in_g(X)) 10.61/3.59 isnumber_in_g(p(X)) -> U8_g(X, isnumber_in_g(X)) 10.61/3.59 U8_g(X, isnumber_out_g(X)) -> isnumber_out_g(p(X)) 10.61/3.59 U7_g(X, isnumber_out_g(X)) -> isnumber_out_g(s(X)) 10.61/3.59 U1_gga(T, X1, isnumber_out_g(T)) -> d_out_gga(T, X1, 0) 10.61/3.59 d_in_gga(times(U, V), X) -> U2_gga(U, V, X, d_in_gga(U, X)) 10.61/3.59 d_in_gga(div(U, V), X) -> U4_gga(U, V, X, d_in_gga(times(U, power(V, p(0))), X)) 10.61/3.59 d_in_gga(power(U, V), X) -> U5_gga(U, V, X, isnumber_in_g(V)) 10.61/3.59 U5_gga(U, V, X, isnumber_out_g(V)) -> U6_gga(U, V, X, d_in_gga(U, X)) 10.61/3.59 U6_gga(U, V, X, d_out_gga(U, X, W)) -> d_out_gga(power(U, V), X, times(V, times(W, power(U, p(V))))) 10.61/3.59 U4_gga(U, V, X, d_out_gga(times(U, power(V, p(0))), X, W)) -> d_out_gga(div(U, V), X, W) 10.61/3.59 U2_gga(U, V, X, d_out_gga(U, X, A)) -> U3_gga(U, V, X, A, d_in_gga(V, X)) 10.61/3.59 U3_gga(U, V, X, A, d_out_gga(V, X, B)) -> d_out_gga(times(U, V), X, +(times(B, U), times(A, V))) 10.61/3.59 10.61/3.59 The set Q consists of the following terms: 10.61/3.59 10.61/3.59 d_in_gga(x0, x1) 10.61/3.59 isnumber_in_g(x0) 10.61/3.59 U8_g(x0, x1) 10.61/3.59 U7_g(x0, x1) 10.61/3.59 U1_gga(x0, x1, x2) 10.61/3.59 U5_gga(x0, x1, x2, x3) 10.61/3.59 U6_gga(x0, x1, x2, x3) 10.61/3.59 U4_gga(x0, x1, x2, x3) 10.61/3.59 U2_gga(x0, x1, x2, x3) 10.61/3.59 U3_gga(x0, x1, x2, x3, x4) 10.61/3.59 10.61/3.59 We have to consider all (P,Q,R)-chains. 10.61/3.59 ---------------------------------------- 10.61/3.59 10.61/3.59 (21) QDPSizeChangeProof (EQUIVALENT) 10.61/3.59 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 10.77/3.59 10.77/3.59 From the DPs we obtained the following set of size-change graphs: 10.77/3.59 *U2_GGA(U, V, X, d_out_gga(U, X, A)) -> D_IN_GGA(V, X) 10.77/3.59 The graph contains the following edges 2 >= 1, 3 >= 2, 4 > 2 10.77/3.59 10.77/3.59 10.77/3.59 *D_IN_GGA(times(U, V), X) -> D_IN_GGA(U, X) 10.77/3.59 The graph contains the following edges 1 > 1, 2 >= 2 10.77/3.59 10.77/3.59 10.77/3.59 *D_IN_GGA(times(U, V), X) -> U2_GGA(U, V, X, d_in_gga(U, X)) 10.77/3.59 The graph contains the following edges 1 > 1, 1 > 2, 2 >= 3 10.77/3.59 10.77/3.59 10.77/3.59 ---------------------------------------- 10.77/3.59 10.77/3.59 (22) 10.77/3.59 YES 10.87/3.66 EOF