4.48/2.00 YES 4.48/2.01 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 4.48/2.01 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.48/2.01 4.48/2.01 4.48/2.01 Left Termination of the query pattern 4.48/2.01 4.48/2.01 reverse(g,a,g) 4.48/2.01 4.48/2.01 w.r.t. the given Prolog program could successfully be proven: 4.48/2.01 4.48/2.01 (0) Prolog 4.48/2.01 (1) PrologToPiTRSProof [SOUND, 0 ms] 4.48/2.01 (2) PiTRS 4.48/2.01 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 4.48/2.01 (4) PiDP 4.48/2.01 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 4.48/2.01 (6) PiDP 4.48/2.01 (7) UsableRulesProof [EQUIVALENT, 0 ms] 4.48/2.01 (8) PiDP 4.48/2.01 (9) PiDPToQDPProof [SOUND, 1 ms] 4.48/2.01 (10) QDP 4.48/2.01 (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] 4.48/2.01 (12) YES 4.48/2.01 4.48/2.01 4.48/2.01 ---------------------------------------- 4.48/2.01 4.48/2.01 (0) 4.48/2.01 Obligation: 4.48/2.01 Clauses: 4.48/2.01 4.48/2.01 reverse([], X, X). 4.48/2.01 reverse(.(X, Y), Z, U) :- reverse(Y, Z, .(X, U)). 4.48/2.01 4.48/2.01 4.48/2.01 Query: reverse(g,a,g) 4.48/2.01 ---------------------------------------- 4.48/2.01 4.48/2.01 (1) PrologToPiTRSProof (SOUND) 4.48/2.01 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 4.48/2.01 4.48/2.01 reverse_in_3: (b,f,b) 4.48/2.01 4.48/2.01 Transforming Prolog into the following Term Rewriting System: 4.48/2.01 4.48/2.01 Pi-finite rewrite system: 4.48/2.01 The TRS R consists of the following rules: 4.48/2.01 4.48/2.01 reverse_in_gag([], X, X) -> reverse_out_gag([], X, X) 4.48/2.01 reverse_in_gag(.(X, Y), Z, U) -> U1_gag(X, Y, Z, U, reverse_in_gag(Y, Z, .(X, U))) 4.48/2.01 U1_gag(X, Y, Z, U, reverse_out_gag(Y, Z, .(X, U))) -> reverse_out_gag(.(X, Y), Z, U) 4.48/2.01 4.48/2.01 The argument filtering Pi contains the following mapping: 4.48/2.01 reverse_in_gag(x1, x2, x3) = reverse_in_gag(x1, x3) 4.48/2.01 4.48/2.01 [] = [] 4.48/2.01 4.48/2.01 reverse_out_gag(x1, x2, x3) = reverse_out_gag(x2) 4.48/2.01 4.48/2.01 .(x1, x2) = .(x1, x2) 4.48/2.01 4.48/2.01 U1_gag(x1, x2, x3, x4, x5) = U1_gag(x5) 4.48/2.01 4.48/2.01 4.48/2.01 4.48/2.01 4.48/2.01 4.48/2.01 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 4.48/2.01 4.48/2.01 4.48/2.01 4.48/2.01 ---------------------------------------- 4.48/2.01 4.48/2.01 (2) 4.48/2.01 Obligation: 4.48/2.01 Pi-finite rewrite system: 4.48/2.01 The TRS R consists of the following rules: 4.48/2.01 4.48/2.01 reverse_in_gag([], X, X) -> reverse_out_gag([], X, X) 4.48/2.01 reverse_in_gag(.(X, Y), Z, U) -> U1_gag(X, Y, Z, U, reverse_in_gag(Y, Z, .(X, U))) 4.48/2.01 U1_gag(X, Y, Z, U, reverse_out_gag(Y, Z, .(X, U))) -> reverse_out_gag(.(X, Y), Z, U) 4.48/2.01 4.48/2.01 The argument filtering Pi contains the following mapping: 4.48/2.01 reverse_in_gag(x1, x2, x3) = reverse_in_gag(x1, x3) 4.48/2.01 4.48/2.01 [] = [] 4.48/2.01 4.48/2.01 reverse_out_gag(x1, x2, x3) = reverse_out_gag(x2) 4.48/2.01 4.48/2.01 .(x1, x2) = .(x1, x2) 4.48/2.01 4.48/2.01 U1_gag(x1, x2, x3, x4, x5) = U1_gag(x5) 4.48/2.01 4.48/2.01 4.48/2.01 4.48/2.01 ---------------------------------------- 4.48/2.01 4.48/2.01 (3) DependencyPairsProof (EQUIVALENT) 4.48/2.01 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 4.48/2.01 Pi DP problem: 4.48/2.01 The TRS P consists of the following rules: 4.48/2.01 4.48/2.01 REVERSE_IN_GAG(.(X, Y), Z, U) -> U1_GAG(X, Y, Z, U, reverse_in_gag(Y, Z, .(X, U))) 4.48/2.01 REVERSE_IN_GAG(.(X, Y), Z, U) -> REVERSE_IN_GAG(Y, Z, .(X, U)) 4.48/2.01 4.48/2.01 The TRS R consists of the following rules: 4.48/2.01 4.48/2.01 reverse_in_gag([], X, X) -> reverse_out_gag([], X, X) 4.48/2.01 reverse_in_gag(.(X, Y), Z, U) -> U1_gag(X, Y, Z, U, reverse_in_gag(Y, Z, .(X, U))) 4.48/2.01 U1_gag(X, Y, Z, U, reverse_out_gag(Y, Z, .(X, U))) -> reverse_out_gag(.(X, Y), Z, U) 4.48/2.01 4.48/2.01 The argument filtering Pi contains the following mapping: 4.48/2.01 reverse_in_gag(x1, x2, x3) = reverse_in_gag(x1, x3) 4.48/2.01 4.48/2.01 [] = [] 4.48/2.01 4.48/2.01 reverse_out_gag(x1, x2, x3) = reverse_out_gag(x2) 4.48/2.01 4.48/2.01 .(x1, x2) = .(x1, x2) 4.48/2.01 4.48/2.01 U1_gag(x1, x2, x3, x4, x5) = U1_gag(x5) 4.48/2.01 4.48/2.01 REVERSE_IN_GAG(x1, x2, x3) = REVERSE_IN_GAG(x1, x3) 4.48/2.01 4.48/2.01 U1_GAG(x1, x2, x3, x4, x5) = U1_GAG(x5) 4.48/2.01 4.48/2.01 4.48/2.01 We have to consider all (P,R,Pi)-chains 4.48/2.01 ---------------------------------------- 4.48/2.01 4.48/2.01 (4) 4.48/2.01 Obligation: 4.48/2.01 Pi DP problem: 4.48/2.01 The TRS P consists of the following rules: 4.48/2.01 4.48/2.01 REVERSE_IN_GAG(.(X, Y), Z, U) -> U1_GAG(X, Y, Z, U, reverse_in_gag(Y, Z, .(X, U))) 4.48/2.01 REVERSE_IN_GAG(.(X, Y), Z, U) -> REVERSE_IN_GAG(Y, Z, .(X, U)) 4.48/2.01 4.48/2.01 The TRS R consists of the following rules: 4.48/2.01 4.48/2.01 reverse_in_gag([], X, X) -> reverse_out_gag([], X, X) 4.48/2.01 reverse_in_gag(.(X, Y), Z, U) -> U1_gag(X, Y, Z, U, reverse_in_gag(Y, Z, .(X, U))) 4.48/2.01 U1_gag(X, Y, Z, U, reverse_out_gag(Y, Z, .(X, U))) -> reverse_out_gag(.(X, Y), Z, U) 4.48/2.01 4.48/2.01 The argument filtering Pi contains the following mapping: 4.48/2.01 reverse_in_gag(x1, x2, x3) = reverse_in_gag(x1, x3) 4.48/2.01 4.48/2.01 [] = [] 4.48/2.01 4.48/2.01 reverse_out_gag(x1, x2, x3) = reverse_out_gag(x2) 4.48/2.01 4.48/2.01 .(x1, x2) = .(x1, x2) 4.48/2.01 4.48/2.01 U1_gag(x1, x2, x3, x4, x5) = U1_gag(x5) 4.48/2.01 4.48/2.01 REVERSE_IN_GAG(x1, x2, x3) = REVERSE_IN_GAG(x1, x3) 4.48/2.01 4.48/2.01 U1_GAG(x1, x2, x3, x4, x5) = U1_GAG(x5) 4.48/2.01 4.48/2.01 4.48/2.01 We have to consider all (P,R,Pi)-chains 4.48/2.01 ---------------------------------------- 4.48/2.01 4.48/2.01 (5) DependencyGraphProof (EQUIVALENT) 4.48/2.01 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node. 4.48/2.01 ---------------------------------------- 4.48/2.01 4.48/2.01 (6) 4.48/2.01 Obligation: 4.48/2.01 Pi DP problem: 4.48/2.01 The TRS P consists of the following rules: 4.48/2.01 4.48/2.01 REVERSE_IN_GAG(.(X, Y), Z, U) -> REVERSE_IN_GAG(Y, Z, .(X, U)) 4.48/2.01 4.48/2.01 The TRS R consists of the following rules: 4.48/2.01 4.48/2.01 reverse_in_gag([], X, X) -> reverse_out_gag([], X, X) 4.48/2.01 reverse_in_gag(.(X, Y), Z, U) -> U1_gag(X, Y, Z, U, reverse_in_gag(Y, Z, .(X, U))) 4.48/2.01 U1_gag(X, Y, Z, U, reverse_out_gag(Y, Z, .(X, U))) -> reverse_out_gag(.(X, Y), Z, U) 4.48/2.01 4.48/2.01 The argument filtering Pi contains the following mapping: 4.48/2.01 reverse_in_gag(x1, x2, x3) = reverse_in_gag(x1, x3) 4.48/2.01 4.48/2.01 [] = [] 4.48/2.01 4.48/2.01 reverse_out_gag(x1, x2, x3) = reverse_out_gag(x2) 4.48/2.01 4.48/2.01 .(x1, x2) = .(x1, x2) 4.48/2.01 4.48/2.01 U1_gag(x1, x2, x3, x4, x5) = U1_gag(x5) 4.48/2.01 4.48/2.01 REVERSE_IN_GAG(x1, x2, x3) = REVERSE_IN_GAG(x1, x3) 4.48/2.01 4.48/2.01 4.48/2.01 We have to consider all (P,R,Pi)-chains 4.48/2.01 ---------------------------------------- 4.48/2.01 4.48/2.01 (7) UsableRulesProof (EQUIVALENT) 4.48/2.01 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 4.48/2.01 ---------------------------------------- 4.48/2.01 4.48/2.01 (8) 4.48/2.01 Obligation: 4.48/2.01 Pi DP problem: 4.48/2.01 The TRS P consists of the following rules: 4.48/2.01 4.48/2.01 REVERSE_IN_GAG(.(X, Y), Z, U) -> REVERSE_IN_GAG(Y, Z, .(X, U)) 4.48/2.01 4.48/2.01 R is empty. 4.48/2.01 The argument filtering Pi contains the following mapping: 4.48/2.01 .(x1, x2) = .(x1, x2) 4.48/2.01 4.48/2.01 REVERSE_IN_GAG(x1, x2, x3) = REVERSE_IN_GAG(x1, x3) 4.48/2.01 4.48/2.01 4.48/2.01 We have to consider all (P,R,Pi)-chains 4.48/2.01 ---------------------------------------- 4.48/2.01 4.48/2.01 (9) PiDPToQDPProof (SOUND) 4.48/2.01 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 4.48/2.01 ---------------------------------------- 4.48/2.01 4.48/2.01 (10) 4.48/2.01 Obligation: 4.48/2.01 Q DP problem: 4.48/2.01 The TRS P consists of the following rules: 4.48/2.01 4.48/2.01 REVERSE_IN_GAG(.(X, Y), U) -> REVERSE_IN_GAG(Y, .(X, U)) 4.48/2.01 4.48/2.01 R is empty. 4.48/2.01 Q is empty. 4.48/2.01 We have to consider all (P,Q,R)-chains. 4.48/2.01 ---------------------------------------- 4.48/2.01 4.48/2.01 (11) QDPSizeChangeProof (EQUIVALENT) 4.48/2.01 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 4.48/2.01 4.48/2.01 From the DPs we obtained the following set of size-change graphs: 4.48/2.01 *REVERSE_IN_GAG(.(X, Y), U) -> REVERSE_IN_GAG(Y, .(X, U)) 4.48/2.01 The graph contains the following edges 1 > 1 4.48/2.01 4.48/2.01 4.48/2.01 ---------------------------------------- 4.48/2.01 4.48/2.01 (12) 4.48/2.01 YES 4.48/2.04 EOF