3.83/1.72 YES 3.83/1.74 proof of /export/starexec/sandbox2/benchmark/theBenchmark.pl 3.83/1.74 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.83/1.74 3.83/1.74 3.83/1.74 Left Termination of the query pattern 3.83/1.74 3.83/1.74 dis(g) 3.83/1.74 3.83/1.74 w.r.t. the given Prolog program could successfully be proven: 3.83/1.74 3.83/1.74 (0) Prolog 3.83/1.74 (1) PrologToPiTRSProof [SOUND, 0 ms] 3.83/1.74 (2) PiTRS 3.83/1.74 (3) DependencyPairsProof [EQUIVALENT, 7 ms] 3.83/1.74 (4) PiDP 3.83/1.74 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 3.83/1.74 (6) PiDP 3.83/1.74 (7) PiDPToQDPProof [SOUND, 0 ms] 3.83/1.74 (8) QDP 3.83/1.74 (9) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.83/1.74 (10) YES 3.83/1.74 3.83/1.74 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (0) 3.83/1.74 Obligation: 3.83/1.74 Clauses: 3.83/1.74 3.83/1.74 dis(or(B1, B2)) :- ','(con(B1), dis(B2)). 3.83/1.74 dis(B) :- con(B). 3.83/1.74 con(and(B1, B2)) :- ','(dis(B1), con(B2)). 3.83/1.74 con(B) :- bool(B). 3.83/1.74 bool(0). 3.83/1.74 bool(1). 3.83/1.74 3.83/1.74 3.83/1.74 Query: dis(g) 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (1) PrologToPiTRSProof (SOUND) 3.83/1.74 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 3.83/1.74 3.83/1.74 dis_in_1: (b) 3.83/1.74 3.83/1.74 con_in_1: (b) 3.83/1.74 3.83/1.74 Transforming Prolog into the following Term Rewriting System: 3.83/1.74 3.83/1.74 Pi-finite rewrite system: 3.83/1.74 The TRS R consists of the following rules: 3.83/1.74 3.83/1.74 dis_in_g(or(B1, B2)) -> U1_g(B1, B2, con_in_g(B1)) 3.83/1.74 con_in_g(and(B1, B2)) -> U4_g(B1, B2, dis_in_g(B1)) 3.83/1.74 dis_in_g(B) -> U3_g(B, con_in_g(B)) 3.83/1.74 con_in_g(B) -> U6_g(B, bool_in_g(B)) 3.83/1.74 bool_in_g(0) -> bool_out_g(0) 3.83/1.74 bool_in_g(1) -> bool_out_g(1) 3.83/1.74 U6_g(B, bool_out_g(B)) -> con_out_g(B) 3.83/1.74 U3_g(B, con_out_g(B)) -> dis_out_g(B) 3.83/1.74 U4_g(B1, B2, dis_out_g(B1)) -> U5_g(B1, B2, con_in_g(B2)) 3.83/1.74 U5_g(B1, B2, con_out_g(B2)) -> con_out_g(and(B1, B2)) 3.83/1.74 U1_g(B1, B2, con_out_g(B1)) -> U2_g(B1, B2, dis_in_g(B2)) 3.83/1.74 U2_g(B1, B2, dis_out_g(B2)) -> dis_out_g(or(B1, B2)) 3.83/1.74 3.83/1.74 The argument filtering Pi contains the following mapping: 3.83/1.74 dis_in_g(x1) = dis_in_g(x1) 3.83/1.74 3.83/1.74 or(x1, x2) = or(x1, x2) 3.83/1.74 3.83/1.74 U1_g(x1, x2, x3) = U1_g(x2, x3) 3.83/1.74 3.83/1.74 con_in_g(x1) = con_in_g(x1) 3.83/1.74 3.83/1.74 and(x1, x2) = and(x1, x2) 3.83/1.74 3.83/1.74 U4_g(x1, x2, x3) = U4_g(x2, x3) 3.83/1.74 3.83/1.74 U3_g(x1, x2) = U3_g(x2) 3.83/1.74 3.83/1.74 U6_g(x1, x2) = U6_g(x2) 3.83/1.74 3.83/1.74 bool_in_g(x1) = bool_in_g(x1) 3.83/1.74 3.83/1.74 0 = 0 3.83/1.74 3.83/1.74 bool_out_g(x1) = bool_out_g 3.83/1.74 3.83/1.74 1 = 1 3.83/1.74 3.83/1.74 con_out_g(x1) = con_out_g 3.83/1.74 3.83/1.74 dis_out_g(x1) = dis_out_g 3.83/1.74 3.83/1.74 U5_g(x1, x2, x3) = U5_g(x3) 3.83/1.74 3.83/1.74 U2_g(x1, x2, x3) = U2_g(x3) 3.83/1.74 3.83/1.74 3.83/1.74 3.83/1.74 3.83/1.74 3.83/1.74 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 3.83/1.74 3.83/1.74 3.83/1.74 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (2) 3.83/1.74 Obligation: 3.83/1.74 Pi-finite rewrite system: 3.83/1.74 The TRS R consists of the following rules: 3.83/1.74 3.83/1.74 dis_in_g(or(B1, B2)) -> U1_g(B1, B2, con_in_g(B1)) 3.83/1.74 con_in_g(and(B1, B2)) -> U4_g(B1, B2, dis_in_g(B1)) 3.83/1.74 dis_in_g(B) -> U3_g(B, con_in_g(B)) 3.83/1.74 con_in_g(B) -> U6_g(B, bool_in_g(B)) 3.83/1.74 bool_in_g(0) -> bool_out_g(0) 3.83/1.74 bool_in_g(1) -> bool_out_g(1) 3.83/1.74 U6_g(B, bool_out_g(B)) -> con_out_g(B) 3.83/1.74 U3_g(B, con_out_g(B)) -> dis_out_g(B) 3.83/1.74 U4_g(B1, B2, dis_out_g(B1)) -> U5_g(B1, B2, con_in_g(B2)) 3.83/1.74 U5_g(B1, B2, con_out_g(B2)) -> con_out_g(and(B1, B2)) 3.83/1.74 U1_g(B1, B2, con_out_g(B1)) -> U2_g(B1, B2, dis_in_g(B2)) 3.83/1.74 U2_g(B1, B2, dis_out_g(B2)) -> dis_out_g(or(B1, B2)) 3.83/1.74 3.83/1.74 The argument filtering Pi contains the following mapping: 3.83/1.74 dis_in_g(x1) = dis_in_g(x1) 3.83/1.74 3.83/1.74 or(x1, x2) = or(x1, x2) 3.83/1.74 3.83/1.74 U1_g(x1, x2, x3) = U1_g(x2, x3) 3.83/1.74 3.83/1.74 con_in_g(x1) = con_in_g(x1) 3.83/1.74 3.83/1.74 and(x1, x2) = and(x1, x2) 3.83/1.74 3.83/1.74 U4_g(x1, x2, x3) = U4_g(x2, x3) 3.83/1.74 3.83/1.74 U3_g(x1, x2) = U3_g(x2) 3.83/1.74 3.83/1.74 U6_g(x1, x2) = U6_g(x2) 3.83/1.74 3.83/1.74 bool_in_g(x1) = bool_in_g(x1) 3.83/1.74 3.83/1.74 0 = 0 3.83/1.74 3.83/1.74 bool_out_g(x1) = bool_out_g 3.83/1.74 3.83/1.74 1 = 1 3.83/1.74 3.83/1.74 con_out_g(x1) = con_out_g 3.83/1.74 3.83/1.74 dis_out_g(x1) = dis_out_g 3.83/1.74 3.83/1.74 U5_g(x1, x2, x3) = U5_g(x3) 3.83/1.74 3.83/1.74 U2_g(x1, x2, x3) = U2_g(x3) 3.83/1.74 3.83/1.74 3.83/1.74 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (3) DependencyPairsProof (EQUIVALENT) 3.83/1.74 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 3.83/1.74 Pi DP problem: 3.83/1.74 The TRS P consists of the following rules: 3.83/1.74 3.83/1.74 DIS_IN_G(or(B1, B2)) -> U1_G(B1, B2, con_in_g(B1)) 3.83/1.74 DIS_IN_G(or(B1, B2)) -> CON_IN_G(B1) 3.83/1.74 CON_IN_G(and(B1, B2)) -> U4_G(B1, B2, dis_in_g(B1)) 3.83/1.74 CON_IN_G(and(B1, B2)) -> DIS_IN_G(B1) 3.83/1.74 DIS_IN_G(B) -> U3_G(B, con_in_g(B)) 3.83/1.74 DIS_IN_G(B) -> CON_IN_G(B) 3.83/1.74 CON_IN_G(B) -> U6_G(B, bool_in_g(B)) 3.83/1.74 CON_IN_G(B) -> BOOL_IN_G(B) 3.83/1.74 U4_G(B1, B2, dis_out_g(B1)) -> U5_G(B1, B2, con_in_g(B2)) 3.83/1.74 U4_G(B1, B2, dis_out_g(B1)) -> CON_IN_G(B2) 3.83/1.74 U1_G(B1, B2, con_out_g(B1)) -> U2_G(B1, B2, dis_in_g(B2)) 3.83/1.74 U1_G(B1, B2, con_out_g(B1)) -> DIS_IN_G(B2) 3.83/1.74 3.83/1.74 The TRS R consists of the following rules: 3.83/1.74 3.83/1.74 dis_in_g(or(B1, B2)) -> U1_g(B1, B2, con_in_g(B1)) 3.83/1.74 con_in_g(and(B1, B2)) -> U4_g(B1, B2, dis_in_g(B1)) 3.83/1.74 dis_in_g(B) -> U3_g(B, con_in_g(B)) 3.83/1.74 con_in_g(B) -> U6_g(B, bool_in_g(B)) 3.83/1.74 bool_in_g(0) -> bool_out_g(0) 3.83/1.74 bool_in_g(1) -> bool_out_g(1) 3.83/1.74 U6_g(B, bool_out_g(B)) -> con_out_g(B) 3.83/1.74 U3_g(B, con_out_g(B)) -> dis_out_g(B) 3.83/1.74 U4_g(B1, B2, dis_out_g(B1)) -> U5_g(B1, B2, con_in_g(B2)) 3.83/1.74 U5_g(B1, B2, con_out_g(B2)) -> con_out_g(and(B1, B2)) 3.83/1.74 U1_g(B1, B2, con_out_g(B1)) -> U2_g(B1, B2, dis_in_g(B2)) 3.83/1.74 U2_g(B1, B2, dis_out_g(B2)) -> dis_out_g(or(B1, B2)) 3.83/1.74 3.83/1.74 The argument filtering Pi contains the following mapping: 3.83/1.74 dis_in_g(x1) = dis_in_g(x1) 3.83/1.74 3.83/1.74 or(x1, x2) = or(x1, x2) 3.83/1.74 3.83/1.74 U1_g(x1, x2, x3) = U1_g(x2, x3) 3.83/1.74 3.83/1.74 con_in_g(x1) = con_in_g(x1) 3.83/1.74 3.83/1.74 and(x1, x2) = and(x1, x2) 3.83/1.74 3.83/1.74 U4_g(x1, x2, x3) = U4_g(x2, x3) 3.83/1.74 3.83/1.74 U3_g(x1, x2) = U3_g(x2) 3.83/1.74 3.83/1.74 U6_g(x1, x2) = U6_g(x2) 3.83/1.74 3.83/1.74 bool_in_g(x1) = bool_in_g(x1) 3.83/1.74 3.83/1.74 0 = 0 3.83/1.74 3.83/1.74 bool_out_g(x1) = bool_out_g 3.83/1.74 3.83/1.74 1 = 1 3.83/1.74 3.83/1.74 con_out_g(x1) = con_out_g 3.83/1.74 3.83/1.74 dis_out_g(x1) = dis_out_g 3.83/1.74 3.83/1.74 U5_g(x1, x2, x3) = U5_g(x3) 3.83/1.74 3.83/1.74 U2_g(x1, x2, x3) = U2_g(x3) 3.83/1.74 3.83/1.74 DIS_IN_G(x1) = DIS_IN_G(x1) 3.83/1.74 3.83/1.74 U1_G(x1, x2, x3) = U1_G(x2, x3) 3.83/1.74 3.83/1.74 CON_IN_G(x1) = CON_IN_G(x1) 3.83/1.74 3.83/1.74 U4_G(x1, x2, x3) = U4_G(x2, x3) 3.83/1.74 3.83/1.74 U3_G(x1, x2) = U3_G(x2) 3.83/1.74 3.83/1.74 U6_G(x1, x2) = U6_G(x2) 3.83/1.74 3.83/1.74 BOOL_IN_G(x1) = BOOL_IN_G(x1) 3.83/1.74 3.83/1.74 U5_G(x1, x2, x3) = U5_G(x3) 3.83/1.74 3.83/1.74 U2_G(x1, x2, x3) = U2_G(x3) 3.83/1.74 3.83/1.74 3.83/1.74 We have to consider all (P,R,Pi)-chains 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (4) 3.83/1.74 Obligation: 3.83/1.74 Pi DP problem: 3.83/1.74 The TRS P consists of the following rules: 3.83/1.74 3.83/1.74 DIS_IN_G(or(B1, B2)) -> U1_G(B1, B2, con_in_g(B1)) 3.83/1.74 DIS_IN_G(or(B1, B2)) -> CON_IN_G(B1) 3.83/1.74 CON_IN_G(and(B1, B2)) -> U4_G(B1, B2, dis_in_g(B1)) 3.83/1.74 CON_IN_G(and(B1, B2)) -> DIS_IN_G(B1) 3.83/1.74 DIS_IN_G(B) -> U3_G(B, con_in_g(B)) 3.83/1.74 DIS_IN_G(B) -> CON_IN_G(B) 3.83/1.74 CON_IN_G(B) -> U6_G(B, bool_in_g(B)) 3.83/1.74 CON_IN_G(B) -> BOOL_IN_G(B) 3.83/1.74 U4_G(B1, B2, dis_out_g(B1)) -> U5_G(B1, B2, con_in_g(B2)) 3.83/1.74 U4_G(B1, B2, dis_out_g(B1)) -> CON_IN_G(B2) 3.83/1.74 U1_G(B1, B2, con_out_g(B1)) -> U2_G(B1, B2, dis_in_g(B2)) 3.83/1.74 U1_G(B1, B2, con_out_g(B1)) -> DIS_IN_G(B2) 3.83/1.74 3.83/1.74 The TRS R consists of the following rules: 3.83/1.74 3.83/1.74 dis_in_g(or(B1, B2)) -> U1_g(B1, B2, con_in_g(B1)) 3.83/1.74 con_in_g(and(B1, B2)) -> U4_g(B1, B2, dis_in_g(B1)) 3.83/1.74 dis_in_g(B) -> U3_g(B, con_in_g(B)) 3.83/1.74 con_in_g(B) -> U6_g(B, bool_in_g(B)) 3.83/1.74 bool_in_g(0) -> bool_out_g(0) 3.83/1.74 bool_in_g(1) -> bool_out_g(1) 3.83/1.74 U6_g(B, bool_out_g(B)) -> con_out_g(B) 3.83/1.74 U3_g(B, con_out_g(B)) -> dis_out_g(B) 3.83/1.74 U4_g(B1, B2, dis_out_g(B1)) -> U5_g(B1, B2, con_in_g(B2)) 3.83/1.74 U5_g(B1, B2, con_out_g(B2)) -> con_out_g(and(B1, B2)) 3.83/1.74 U1_g(B1, B2, con_out_g(B1)) -> U2_g(B1, B2, dis_in_g(B2)) 3.83/1.74 U2_g(B1, B2, dis_out_g(B2)) -> dis_out_g(or(B1, B2)) 3.83/1.74 3.83/1.74 The argument filtering Pi contains the following mapping: 3.83/1.74 dis_in_g(x1) = dis_in_g(x1) 3.83/1.74 3.83/1.74 or(x1, x2) = or(x1, x2) 3.83/1.74 3.83/1.74 U1_g(x1, x2, x3) = U1_g(x2, x3) 3.83/1.74 3.83/1.74 con_in_g(x1) = con_in_g(x1) 3.83/1.74 3.83/1.74 and(x1, x2) = and(x1, x2) 3.83/1.74 3.83/1.74 U4_g(x1, x2, x3) = U4_g(x2, x3) 3.83/1.74 3.83/1.74 U3_g(x1, x2) = U3_g(x2) 3.83/1.74 3.83/1.74 U6_g(x1, x2) = U6_g(x2) 3.83/1.74 3.83/1.74 bool_in_g(x1) = bool_in_g(x1) 3.83/1.74 3.83/1.74 0 = 0 3.83/1.74 3.83/1.74 bool_out_g(x1) = bool_out_g 3.83/1.74 3.83/1.74 1 = 1 3.83/1.74 3.83/1.74 con_out_g(x1) = con_out_g 3.83/1.74 3.83/1.74 dis_out_g(x1) = dis_out_g 3.83/1.74 3.83/1.74 U5_g(x1, x2, x3) = U5_g(x3) 3.83/1.74 3.83/1.74 U2_g(x1, x2, x3) = U2_g(x3) 3.83/1.74 3.83/1.74 DIS_IN_G(x1) = DIS_IN_G(x1) 3.83/1.74 3.83/1.74 U1_G(x1, x2, x3) = U1_G(x2, x3) 3.83/1.74 3.83/1.74 CON_IN_G(x1) = CON_IN_G(x1) 3.83/1.74 3.83/1.74 U4_G(x1, x2, x3) = U4_G(x2, x3) 3.83/1.74 3.83/1.74 U3_G(x1, x2) = U3_G(x2) 3.83/1.74 3.83/1.74 U6_G(x1, x2) = U6_G(x2) 3.83/1.74 3.83/1.74 BOOL_IN_G(x1) = BOOL_IN_G(x1) 3.83/1.74 3.83/1.74 U5_G(x1, x2, x3) = U5_G(x3) 3.83/1.74 3.83/1.74 U2_G(x1, x2, x3) = U2_G(x3) 3.83/1.74 3.83/1.74 3.83/1.74 We have to consider all (P,R,Pi)-chains 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (5) DependencyGraphProof (EQUIVALENT) 3.83/1.74 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes. 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (6) 3.83/1.74 Obligation: 3.83/1.74 Pi DP problem: 3.83/1.74 The TRS P consists of the following rules: 3.83/1.74 3.83/1.74 U1_G(B1, B2, con_out_g(B1)) -> DIS_IN_G(B2) 3.83/1.74 DIS_IN_G(or(B1, B2)) -> U1_G(B1, B2, con_in_g(B1)) 3.83/1.74 DIS_IN_G(or(B1, B2)) -> CON_IN_G(B1) 3.83/1.74 CON_IN_G(and(B1, B2)) -> U4_G(B1, B2, dis_in_g(B1)) 3.83/1.74 U4_G(B1, B2, dis_out_g(B1)) -> CON_IN_G(B2) 3.83/1.74 CON_IN_G(and(B1, B2)) -> DIS_IN_G(B1) 3.83/1.74 DIS_IN_G(B) -> CON_IN_G(B) 3.83/1.74 3.83/1.74 The TRS R consists of the following rules: 3.83/1.74 3.83/1.74 dis_in_g(or(B1, B2)) -> U1_g(B1, B2, con_in_g(B1)) 3.83/1.74 con_in_g(and(B1, B2)) -> U4_g(B1, B2, dis_in_g(B1)) 3.83/1.74 dis_in_g(B) -> U3_g(B, con_in_g(B)) 3.83/1.74 con_in_g(B) -> U6_g(B, bool_in_g(B)) 3.83/1.74 bool_in_g(0) -> bool_out_g(0) 3.83/1.74 bool_in_g(1) -> bool_out_g(1) 3.83/1.74 U6_g(B, bool_out_g(B)) -> con_out_g(B) 3.83/1.74 U3_g(B, con_out_g(B)) -> dis_out_g(B) 3.83/1.74 U4_g(B1, B2, dis_out_g(B1)) -> U5_g(B1, B2, con_in_g(B2)) 3.83/1.74 U5_g(B1, B2, con_out_g(B2)) -> con_out_g(and(B1, B2)) 3.83/1.74 U1_g(B1, B2, con_out_g(B1)) -> U2_g(B1, B2, dis_in_g(B2)) 3.83/1.74 U2_g(B1, B2, dis_out_g(B2)) -> dis_out_g(or(B1, B2)) 3.83/1.74 3.83/1.74 The argument filtering Pi contains the following mapping: 3.83/1.74 dis_in_g(x1) = dis_in_g(x1) 3.83/1.74 3.83/1.74 or(x1, x2) = or(x1, x2) 3.83/1.74 3.83/1.74 U1_g(x1, x2, x3) = U1_g(x2, x3) 3.83/1.74 3.83/1.74 con_in_g(x1) = con_in_g(x1) 3.83/1.74 3.83/1.74 and(x1, x2) = and(x1, x2) 3.83/1.74 3.83/1.74 U4_g(x1, x2, x3) = U4_g(x2, x3) 3.83/1.74 3.83/1.74 U3_g(x1, x2) = U3_g(x2) 3.83/1.74 3.83/1.74 U6_g(x1, x2) = U6_g(x2) 3.83/1.74 3.83/1.74 bool_in_g(x1) = bool_in_g(x1) 3.83/1.74 3.83/1.74 0 = 0 3.83/1.74 3.83/1.74 bool_out_g(x1) = bool_out_g 3.83/1.74 3.83/1.74 1 = 1 3.83/1.74 3.83/1.74 con_out_g(x1) = con_out_g 3.83/1.74 3.83/1.74 dis_out_g(x1) = dis_out_g 3.83/1.74 3.83/1.74 U5_g(x1, x2, x3) = U5_g(x3) 3.83/1.74 3.83/1.74 U2_g(x1, x2, x3) = U2_g(x3) 3.83/1.74 3.83/1.74 DIS_IN_G(x1) = DIS_IN_G(x1) 3.83/1.74 3.83/1.74 U1_G(x1, x2, x3) = U1_G(x2, x3) 3.83/1.74 3.83/1.74 CON_IN_G(x1) = CON_IN_G(x1) 3.83/1.74 3.83/1.74 U4_G(x1, x2, x3) = U4_G(x2, x3) 3.83/1.74 3.83/1.74 3.83/1.74 We have to consider all (P,R,Pi)-chains 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (7) PiDPToQDPProof (SOUND) 3.83/1.74 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (8) 3.83/1.74 Obligation: 3.83/1.74 Q DP problem: 3.83/1.74 The TRS P consists of the following rules: 3.83/1.74 3.83/1.74 U1_G(B2, con_out_g) -> DIS_IN_G(B2) 3.83/1.74 DIS_IN_G(or(B1, B2)) -> U1_G(B2, con_in_g(B1)) 3.83/1.74 DIS_IN_G(or(B1, B2)) -> CON_IN_G(B1) 3.83/1.74 CON_IN_G(and(B1, B2)) -> U4_G(B2, dis_in_g(B1)) 3.83/1.74 U4_G(B2, dis_out_g) -> CON_IN_G(B2) 3.83/1.74 CON_IN_G(and(B1, B2)) -> DIS_IN_G(B1) 3.83/1.74 DIS_IN_G(B) -> CON_IN_G(B) 3.83/1.74 3.83/1.74 The TRS R consists of the following rules: 3.83/1.74 3.83/1.74 dis_in_g(or(B1, B2)) -> U1_g(B2, con_in_g(B1)) 3.83/1.74 con_in_g(and(B1, B2)) -> U4_g(B2, dis_in_g(B1)) 3.83/1.74 dis_in_g(B) -> U3_g(con_in_g(B)) 3.83/1.74 con_in_g(B) -> U6_g(bool_in_g(B)) 3.83/1.74 bool_in_g(0) -> bool_out_g 3.83/1.74 bool_in_g(1) -> bool_out_g 3.83/1.74 U6_g(bool_out_g) -> con_out_g 3.83/1.74 U3_g(con_out_g) -> dis_out_g 3.83/1.74 U4_g(B2, dis_out_g) -> U5_g(con_in_g(B2)) 3.83/1.74 U5_g(con_out_g) -> con_out_g 3.83/1.74 U1_g(B2, con_out_g) -> U2_g(dis_in_g(B2)) 3.83/1.74 U2_g(dis_out_g) -> dis_out_g 3.83/1.74 3.83/1.74 The set Q consists of the following terms: 3.83/1.74 3.83/1.74 dis_in_g(x0) 3.83/1.74 con_in_g(x0) 3.83/1.74 bool_in_g(x0) 3.83/1.74 U6_g(x0) 3.83/1.74 U3_g(x0) 3.83/1.74 U4_g(x0, x1) 3.83/1.74 U5_g(x0) 3.83/1.74 U1_g(x0, x1) 3.83/1.74 U2_g(x0) 3.83/1.74 3.83/1.74 We have to consider all (P,Q,R)-chains. 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (9) QDPSizeChangeProof (EQUIVALENT) 3.83/1.74 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.83/1.74 3.83/1.74 From the DPs we obtained the following set of size-change graphs: 3.83/1.74 *DIS_IN_G(or(B1, B2)) -> U1_G(B2, con_in_g(B1)) 3.83/1.74 The graph contains the following edges 1 > 1 3.83/1.74 3.83/1.74 3.83/1.74 *U1_G(B2, con_out_g) -> DIS_IN_G(B2) 3.83/1.74 The graph contains the following edges 1 >= 1 3.83/1.74 3.83/1.74 3.83/1.74 *CON_IN_G(and(B1, B2)) -> DIS_IN_G(B1) 3.83/1.74 The graph contains the following edges 1 > 1 3.83/1.74 3.83/1.74 3.83/1.74 *CON_IN_G(and(B1, B2)) -> U4_G(B2, dis_in_g(B1)) 3.83/1.74 The graph contains the following edges 1 > 1 3.83/1.74 3.83/1.74 3.83/1.74 *U4_G(B2, dis_out_g) -> CON_IN_G(B2) 3.83/1.74 The graph contains the following edges 1 >= 1 3.83/1.74 3.83/1.74 3.83/1.74 *DIS_IN_G(or(B1, B2)) -> CON_IN_G(B1) 3.83/1.74 The graph contains the following edges 1 > 1 3.83/1.74 3.83/1.74 3.83/1.74 *DIS_IN_G(B) -> CON_IN_G(B) 3.83/1.74 The graph contains the following edges 1 >= 1 3.83/1.74 3.83/1.74 3.83/1.74 ---------------------------------------- 3.83/1.74 3.83/1.74 (10) 3.83/1.74 YES 4.02/1.80 EOF