4.17/1.87 YES 4.43/1.97 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 4.43/1.97 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.43/1.97 4.43/1.97 4.43/1.97 Left Termination of the query pattern 4.43/1.97 4.43/1.97 reverse(g,a) 4.43/1.97 4.43/1.97 w.r.t. the given Prolog program could successfully be proven: 4.43/1.97 4.43/1.97 (0) Prolog 4.43/1.97 (1) PrologToPiTRSProof [SOUND, 0 ms] 4.43/1.97 (2) PiTRS 4.43/1.97 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 4.43/1.97 (4) PiDP 4.43/1.97 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 4.43/1.97 (6) AND 4.43/1.97 (7) PiDP 4.43/1.97 (8) UsableRulesProof [EQUIVALENT, 0 ms] 4.43/1.97 (9) PiDP 4.43/1.97 (10) PiDPToQDPProof [SOUND, 0 ms] 4.43/1.97 (11) QDP 4.43/1.97 (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] 4.43/1.97 (13) YES 4.43/1.97 (14) PiDP 4.43/1.97 (15) UsableRulesProof [EQUIVALENT, 0 ms] 4.43/1.97 (16) PiDP 4.43/1.97 (17) PiDPToQDPProof [SOUND, 0 ms] 4.43/1.97 (18) QDP 4.43/1.97 (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] 4.43/1.97 (20) YES 4.43/1.97 4.43/1.97 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (0) 4.43/1.97 Obligation: 4.43/1.97 Clauses: 4.43/1.97 4.43/1.97 app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs). 4.43/1.97 app([], Ys, Ys). 4.43/1.97 reverse(.(X, Xs), Ys) :- ','(reverse(Xs, Zs), app(Zs, .(X, []), Ys)). 4.43/1.97 reverse([], []). 4.43/1.97 4.43/1.97 4.43/1.97 Query: reverse(g,a) 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (1) PrologToPiTRSProof (SOUND) 4.43/1.97 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 4.43/1.97 4.43/1.97 reverse_in_2: (b,f) 4.43/1.97 4.43/1.97 app_in_3: (b,b,f) 4.43/1.97 4.43/1.97 Transforming Prolog into the following Term Rewriting System: 4.43/1.97 4.43/1.97 Pi-finite rewrite system: 4.43/1.97 The TRS R consists of the following rules: 4.43/1.97 4.43/1.97 reverse_in_ga(.(X, Xs), Ys) -> U2_ga(X, Xs, Ys, reverse_in_ga(Xs, Zs)) 4.43/1.97 reverse_in_ga([], []) -> reverse_out_ga([], []) 4.43/1.97 U2_ga(X, Xs, Ys, reverse_out_ga(Xs, Zs)) -> U3_ga(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 4.43/1.97 app_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 4.43/1.97 app_in_gga([], Ys, Ys) -> app_out_gga([], Ys, Ys) 4.43/1.97 U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) -> app_out_gga(.(X, Xs), Ys, .(X, Zs)) 4.43/1.97 U3_ga(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) -> reverse_out_ga(.(X, Xs), Ys) 4.43/1.97 4.43/1.97 The argument filtering Pi contains the following mapping: 4.43/1.97 reverse_in_ga(x1, x2) = reverse_in_ga(x1) 4.43/1.97 4.43/1.97 .(x1, x2) = .(x1, x2) 4.43/1.97 4.43/1.97 U2_ga(x1, x2, x3, x4) = U2_ga(x1, x4) 4.43/1.97 4.43/1.97 [] = [] 4.43/1.97 4.43/1.97 reverse_out_ga(x1, x2) = reverse_out_ga(x2) 4.43/1.97 4.43/1.97 U3_ga(x1, x2, x3, x4) = U3_ga(x4) 4.43/1.97 4.43/1.97 app_in_gga(x1, x2, x3) = app_in_gga(x1, x2) 4.43/1.97 4.43/1.97 U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) 4.43/1.97 4.43/1.97 app_out_gga(x1, x2, x3) = app_out_gga(x3) 4.43/1.97 4.43/1.97 4.43/1.97 4.43/1.97 4.43/1.97 4.43/1.97 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 4.43/1.97 4.43/1.97 4.43/1.97 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (2) 4.43/1.97 Obligation: 4.43/1.97 Pi-finite rewrite system: 4.43/1.97 The TRS R consists of the following rules: 4.43/1.97 4.43/1.97 reverse_in_ga(.(X, Xs), Ys) -> U2_ga(X, Xs, Ys, reverse_in_ga(Xs, Zs)) 4.43/1.97 reverse_in_ga([], []) -> reverse_out_ga([], []) 4.43/1.97 U2_ga(X, Xs, Ys, reverse_out_ga(Xs, Zs)) -> U3_ga(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 4.43/1.97 app_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 4.43/1.97 app_in_gga([], Ys, Ys) -> app_out_gga([], Ys, Ys) 4.43/1.97 U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) -> app_out_gga(.(X, Xs), Ys, .(X, Zs)) 4.43/1.97 U3_ga(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) -> reverse_out_ga(.(X, Xs), Ys) 4.43/1.97 4.43/1.97 The argument filtering Pi contains the following mapping: 4.43/1.97 reverse_in_ga(x1, x2) = reverse_in_ga(x1) 4.43/1.97 4.43/1.97 .(x1, x2) = .(x1, x2) 4.43/1.97 4.43/1.97 U2_ga(x1, x2, x3, x4) = U2_ga(x1, x4) 4.43/1.97 4.43/1.97 [] = [] 4.43/1.97 4.43/1.97 reverse_out_ga(x1, x2) = reverse_out_ga(x2) 4.43/1.97 4.43/1.97 U3_ga(x1, x2, x3, x4) = U3_ga(x4) 4.43/1.97 4.43/1.97 app_in_gga(x1, x2, x3) = app_in_gga(x1, x2) 4.43/1.97 4.43/1.97 U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) 4.43/1.97 4.43/1.97 app_out_gga(x1, x2, x3) = app_out_gga(x3) 4.43/1.97 4.43/1.97 4.43/1.97 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (3) DependencyPairsProof (EQUIVALENT) 4.43/1.97 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 4.43/1.97 Pi DP problem: 4.43/1.97 The TRS P consists of the following rules: 4.43/1.97 4.43/1.97 REVERSE_IN_GA(.(X, Xs), Ys) -> U2_GA(X, Xs, Ys, reverse_in_ga(Xs, Zs)) 4.43/1.97 REVERSE_IN_GA(.(X, Xs), Ys) -> REVERSE_IN_GA(Xs, Zs) 4.43/1.97 U2_GA(X, Xs, Ys, reverse_out_ga(Xs, Zs)) -> U3_GA(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 4.43/1.97 U2_GA(X, Xs, Ys, reverse_out_ga(Xs, Zs)) -> APP_IN_GGA(Zs, .(X, []), Ys) 4.43/1.97 APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> U1_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 4.43/1.97 APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_GGA(Xs, Ys, Zs) 4.43/1.97 4.43/1.97 The TRS R consists of the following rules: 4.43/1.97 4.43/1.97 reverse_in_ga(.(X, Xs), Ys) -> U2_ga(X, Xs, Ys, reverse_in_ga(Xs, Zs)) 4.43/1.97 reverse_in_ga([], []) -> reverse_out_ga([], []) 4.43/1.97 U2_ga(X, Xs, Ys, reverse_out_ga(Xs, Zs)) -> U3_ga(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 4.43/1.97 app_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 4.43/1.97 app_in_gga([], Ys, Ys) -> app_out_gga([], Ys, Ys) 4.43/1.97 U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) -> app_out_gga(.(X, Xs), Ys, .(X, Zs)) 4.43/1.97 U3_ga(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) -> reverse_out_ga(.(X, Xs), Ys) 4.43/1.97 4.43/1.97 The argument filtering Pi contains the following mapping: 4.43/1.97 reverse_in_ga(x1, x2) = reverse_in_ga(x1) 4.43/1.97 4.43/1.97 .(x1, x2) = .(x1, x2) 4.43/1.97 4.43/1.97 U2_ga(x1, x2, x3, x4) = U2_ga(x1, x4) 4.43/1.97 4.43/1.97 [] = [] 4.43/1.97 4.43/1.97 reverse_out_ga(x1, x2) = reverse_out_ga(x2) 4.43/1.97 4.43/1.97 U3_ga(x1, x2, x3, x4) = U3_ga(x4) 4.43/1.97 4.43/1.97 app_in_gga(x1, x2, x3) = app_in_gga(x1, x2) 4.43/1.97 4.43/1.97 U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) 4.43/1.97 4.43/1.97 app_out_gga(x1, x2, x3) = app_out_gga(x3) 4.43/1.97 4.43/1.97 REVERSE_IN_GA(x1, x2) = REVERSE_IN_GA(x1) 4.43/1.97 4.43/1.97 U2_GA(x1, x2, x3, x4) = U2_GA(x1, x4) 4.43/1.97 4.43/1.97 U3_GA(x1, x2, x3, x4) = U3_GA(x4) 4.43/1.97 4.43/1.97 APP_IN_GGA(x1, x2, x3) = APP_IN_GGA(x1, x2) 4.43/1.97 4.43/1.97 U1_GGA(x1, x2, x3, x4, x5) = U1_GGA(x1, x5) 4.43/1.97 4.43/1.97 4.43/1.97 We have to consider all (P,R,Pi)-chains 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (4) 4.43/1.97 Obligation: 4.43/1.97 Pi DP problem: 4.43/1.97 The TRS P consists of the following rules: 4.43/1.97 4.43/1.97 REVERSE_IN_GA(.(X, Xs), Ys) -> U2_GA(X, Xs, Ys, reverse_in_ga(Xs, Zs)) 4.43/1.97 REVERSE_IN_GA(.(X, Xs), Ys) -> REVERSE_IN_GA(Xs, Zs) 4.43/1.97 U2_GA(X, Xs, Ys, reverse_out_ga(Xs, Zs)) -> U3_GA(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 4.43/1.97 U2_GA(X, Xs, Ys, reverse_out_ga(Xs, Zs)) -> APP_IN_GGA(Zs, .(X, []), Ys) 4.43/1.97 APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> U1_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 4.43/1.97 APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_GGA(Xs, Ys, Zs) 4.43/1.97 4.43/1.97 The TRS R consists of the following rules: 4.43/1.97 4.43/1.97 reverse_in_ga(.(X, Xs), Ys) -> U2_ga(X, Xs, Ys, reverse_in_ga(Xs, Zs)) 4.43/1.97 reverse_in_ga([], []) -> reverse_out_ga([], []) 4.43/1.97 U2_ga(X, Xs, Ys, reverse_out_ga(Xs, Zs)) -> U3_ga(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 4.43/1.97 app_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 4.43/1.97 app_in_gga([], Ys, Ys) -> app_out_gga([], Ys, Ys) 4.43/1.97 U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) -> app_out_gga(.(X, Xs), Ys, .(X, Zs)) 4.43/1.97 U3_ga(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) -> reverse_out_ga(.(X, Xs), Ys) 4.43/1.97 4.43/1.97 The argument filtering Pi contains the following mapping: 4.43/1.97 reverse_in_ga(x1, x2) = reverse_in_ga(x1) 4.43/1.97 4.43/1.97 .(x1, x2) = .(x1, x2) 4.43/1.97 4.43/1.97 U2_ga(x1, x2, x3, x4) = U2_ga(x1, x4) 4.43/1.97 4.43/1.97 [] = [] 4.43/1.97 4.43/1.97 reverse_out_ga(x1, x2) = reverse_out_ga(x2) 4.43/1.97 4.43/1.97 U3_ga(x1, x2, x3, x4) = U3_ga(x4) 4.43/1.97 4.43/1.97 app_in_gga(x1, x2, x3) = app_in_gga(x1, x2) 4.43/1.97 4.43/1.97 U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) 4.43/1.97 4.43/1.97 app_out_gga(x1, x2, x3) = app_out_gga(x3) 4.43/1.97 4.43/1.97 REVERSE_IN_GA(x1, x2) = REVERSE_IN_GA(x1) 4.43/1.97 4.43/1.97 U2_GA(x1, x2, x3, x4) = U2_GA(x1, x4) 4.43/1.97 4.43/1.97 U3_GA(x1, x2, x3, x4) = U3_GA(x4) 4.43/1.97 4.43/1.97 APP_IN_GGA(x1, x2, x3) = APP_IN_GGA(x1, x2) 4.43/1.97 4.43/1.97 U1_GGA(x1, x2, x3, x4, x5) = U1_GGA(x1, x5) 4.43/1.97 4.43/1.97 4.43/1.97 We have to consider all (P,R,Pi)-chains 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (5) DependencyGraphProof (EQUIVALENT) 4.43/1.97 The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes. 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (6) 4.43/1.97 Complex Obligation (AND) 4.43/1.97 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (7) 4.43/1.97 Obligation: 4.43/1.97 Pi DP problem: 4.43/1.97 The TRS P consists of the following rules: 4.43/1.97 4.43/1.97 APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_GGA(Xs, Ys, Zs) 4.43/1.97 4.43/1.97 The TRS R consists of the following rules: 4.43/1.97 4.43/1.97 reverse_in_ga(.(X, Xs), Ys) -> U2_ga(X, Xs, Ys, reverse_in_ga(Xs, Zs)) 4.43/1.97 reverse_in_ga([], []) -> reverse_out_ga([], []) 4.43/1.97 U2_ga(X, Xs, Ys, reverse_out_ga(Xs, Zs)) -> U3_ga(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 4.43/1.97 app_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 4.43/1.97 app_in_gga([], Ys, Ys) -> app_out_gga([], Ys, Ys) 4.43/1.97 U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) -> app_out_gga(.(X, Xs), Ys, .(X, Zs)) 4.43/1.97 U3_ga(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) -> reverse_out_ga(.(X, Xs), Ys) 4.43/1.97 4.43/1.97 The argument filtering Pi contains the following mapping: 4.43/1.97 reverse_in_ga(x1, x2) = reverse_in_ga(x1) 4.43/1.97 4.43/1.97 .(x1, x2) = .(x1, x2) 4.43/1.97 4.43/1.97 U2_ga(x1, x2, x3, x4) = U2_ga(x1, x4) 4.43/1.97 4.43/1.97 [] = [] 4.43/1.97 4.43/1.97 reverse_out_ga(x1, x2) = reverse_out_ga(x2) 4.43/1.97 4.43/1.97 U3_ga(x1, x2, x3, x4) = U3_ga(x4) 4.43/1.97 4.43/1.97 app_in_gga(x1, x2, x3) = app_in_gga(x1, x2) 4.43/1.97 4.43/1.97 U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) 4.43/1.97 4.43/1.97 app_out_gga(x1, x2, x3) = app_out_gga(x3) 4.43/1.97 4.43/1.97 APP_IN_GGA(x1, x2, x3) = APP_IN_GGA(x1, x2) 4.43/1.97 4.43/1.97 4.43/1.97 We have to consider all (P,R,Pi)-chains 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (8) UsableRulesProof (EQUIVALENT) 4.43/1.97 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (9) 4.43/1.97 Obligation: 4.43/1.97 Pi DP problem: 4.43/1.97 The TRS P consists of the following rules: 4.43/1.97 4.43/1.97 APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_GGA(Xs, Ys, Zs) 4.43/1.97 4.43/1.97 R is empty. 4.43/1.97 The argument filtering Pi contains the following mapping: 4.43/1.97 .(x1, x2) = .(x1, x2) 4.43/1.97 4.43/1.97 APP_IN_GGA(x1, x2, x3) = APP_IN_GGA(x1, x2) 4.43/1.97 4.43/1.97 4.43/1.97 We have to consider all (P,R,Pi)-chains 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (10) PiDPToQDPProof (SOUND) 4.43/1.97 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (11) 4.43/1.97 Obligation: 4.43/1.97 Q DP problem: 4.43/1.97 The TRS P consists of the following rules: 4.43/1.97 4.43/1.97 APP_IN_GGA(.(X, Xs), Ys) -> APP_IN_GGA(Xs, Ys) 4.43/1.97 4.43/1.97 R is empty. 4.43/1.97 Q is empty. 4.43/1.97 We have to consider all (P,Q,R)-chains. 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (12) QDPSizeChangeProof (EQUIVALENT) 4.43/1.97 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 4.43/1.97 4.43/1.97 From the DPs we obtained the following set of size-change graphs: 4.43/1.97 *APP_IN_GGA(.(X, Xs), Ys) -> APP_IN_GGA(Xs, Ys) 4.43/1.97 The graph contains the following edges 1 > 1, 2 >= 2 4.43/1.97 4.43/1.97 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (13) 4.43/1.97 YES 4.43/1.97 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (14) 4.43/1.97 Obligation: 4.43/1.97 Pi DP problem: 4.43/1.97 The TRS P consists of the following rules: 4.43/1.97 4.43/1.97 REVERSE_IN_GA(.(X, Xs), Ys) -> REVERSE_IN_GA(Xs, Zs) 4.43/1.97 4.43/1.97 The TRS R consists of the following rules: 4.43/1.97 4.43/1.97 reverse_in_ga(.(X, Xs), Ys) -> U2_ga(X, Xs, Ys, reverse_in_ga(Xs, Zs)) 4.43/1.97 reverse_in_ga([], []) -> reverse_out_ga([], []) 4.43/1.97 U2_ga(X, Xs, Ys, reverse_out_ga(Xs, Zs)) -> U3_ga(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 4.43/1.97 app_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U1_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 4.43/1.97 app_in_gga([], Ys, Ys) -> app_out_gga([], Ys, Ys) 4.43/1.97 U1_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) -> app_out_gga(.(X, Xs), Ys, .(X, Zs)) 4.43/1.97 U3_ga(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) -> reverse_out_ga(.(X, Xs), Ys) 4.43/1.97 4.43/1.97 The argument filtering Pi contains the following mapping: 4.43/1.97 reverse_in_ga(x1, x2) = reverse_in_ga(x1) 4.43/1.97 4.43/1.97 .(x1, x2) = .(x1, x2) 4.43/1.97 4.43/1.97 U2_ga(x1, x2, x3, x4) = U2_ga(x1, x4) 4.43/1.97 4.43/1.97 [] = [] 4.43/1.97 4.43/1.97 reverse_out_ga(x1, x2) = reverse_out_ga(x2) 4.43/1.97 4.43/1.97 U3_ga(x1, x2, x3, x4) = U3_ga(x4) 4.43/1.97 4.43/1.97 app_in_gga(x1, x2, x3) = app_in_gga(x1, x2) 4.43/1.97 4.43/1.97 U1_gga(x1, x2, x3, x4, x5) = U1_gga(x1, x5) 4.43/1.97 4.43/1.97 app_out_gga(x1, x2, x3) = app_out_gga(x3) 4.43/1.97 4.43/1.97 REVERSE_IN_GA(x1, x2) = REVERSE_IN_GA(x1) 4.43/1.97 4.43/1.97 4.43/1.97 We have to consider all (P,R,Pi)-chains 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (15) UsableRulesProof (EQUIVALENT) 4.43/1.97 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (16) 4.43/1.97 Obligation: 4.43/1.97 Pi DP problem: 4.43/1.97 The TRS P consists of the following rules: 4.43/1.97 4.43/1.97 REVERSE_IN_GA(.(X, Xs), Ys) -> REVERSE_IN_GA(Xs, Zs) 4.43/1.97 4.43/1.97 R is empty. 4.43/1.97 The argument filtering Pi contains the following mapping: 4.43/1.97 .(x1, x2) = .(x1, x2) 4.43/1.97 4.43/1.97 REVERSE_IN_GA(x1, x2) = REVERSE_IN_GA(x1) 4.43/1.97 4.43/1.97 4.43/1.97 We have to consider all (P,R,Pi)-chains 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (17) PiDPToQDPProof (SOUND) 4.43/1.97 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (18) 4.43/1.97 Obligation: 4.43/1.97 Q DP problem: 4.43/1.97 The TRS P consists of the following rules: 4.43/1.97 4.43/1.97 REVERSE_IN_GA(.(X, Xs)) -> REVERSE_IN_GA(Xs) 4.43/1.97 4.43/1.97 R is empty. 4.43/1.97 Q is empty. 4.43/1.97 We have to consider all (P,Q,R)-chains. 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (19) QDPSizeChangeProof (EQUIVALENT) 4.43/1.97 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 4.43/1.97 4.43/1.97 From the DPs we obtained the following set of size-change graphs: 4.43/1.97 *REVERSE_IN_GA(.(X, Xs)) -> REVERSE_IN_GA(Xs) 4.43/1.97 The graph contains the following edges 1 > 1 4.43/1.97 4.43/1.97 4.43/1.97 ---------------------------------------- 4.43/1.97 4.43/1.97 (20) 4.43/1.97 YES 4.70/2.01 EOF