4.76/1.98 YES 4.94/2.00 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 4.94/2.00 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.94/2.00 4.94/2.00 4.94/2.00 Left Termination of the query pattern 4.94/2.00 4.94/2.00 ordered(g) 4.94/2.00 4.94/2.00 w.r.t. the given Prolog program could successfully be proven: 4.94/2.00 4.94/2.00 (0) Prolog 4.94/2.00 (1) PrologToPiTRSProof [SOUND, 0 ms] 4.94/2.00 (2) PiTRS 4.94/2.00 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 4.94/2.00 (4) PiDP 4.94/2.00 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 4.94/2.00 (6) AND 4.94/2.00 (7) PiDP 4.94/2.00 (8) UsableRulesProof [EQUIVALENT, 0 ms] 4.94/2.00 (9) PiDP 4.94/2.00 (10) PiDPToQDPProof [EQUIVALENT, 17 ms] 4.94/2.00 (11) QDP 4.94/2.00 (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] 4.94/2.00 (13) YES 4.94/2.00 (14) PiDP 4.94/2.00 (15) UsableRulesProof [EQUIVALENT, 0 ms] 4.94/2.00 (16) PiDP 4.94/2.00 (17) PiDPToQDPProof [SOUND, 0 ms] 4.94/2.00 (18) QDP 4.94/2.00 (19) UsableRulesReductionPairsProof [EQUIVALENT, 7 ms] 4.94/2.00 (20) QDP 4.94/2.00 (21) DependencyGraphProof [EQUIVALENT, 0 ms] 4.94/2.00 (22) TRUE 4.94/2.00 4.94/2.00 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (0) 4.94/2.00 Obligation: 4.94/2.00 Clauses: 4.94/2.00 4.94/2.00 ordered([]). 4.94/2.00 ordered(.(X, [])). 4.94/2.00 ordered(.(X, .(Y, Xs))) :- ','(le(X, Y), ordered(.(Y, Xs))). 4.94/2.00 le(s(X), s(Y)) :- le(X, Y). 4.94/2.00 le(0, s(0)). 4.94/2.00 le(0, 0). 4.94/2.00 4.94/2.00 4.94/2.00 Query: ordered(g) 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (1) PrologToPiTRSProof (SOUND) 4.94/2.00 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 4.94/2.00 4.94/2.00 ordered_in_1: (b) 4.94/2.00 4.94/2.00 le_in_2: (b,b) 4.94/2.00 4.94/2.00 Transforming Prolog into the following Term Rewriting System: 4.94/2.00 4.94/2.00 Pi-finite rewrite system: 4.94/2.00 The TRS R consists of the following rules: 4.94/2.00 4.94/2.00 ordered_in_g([]) -> ordered_out_g([]) 4.94/2.00 ordered_in_g(.(X, [])) -> ordered_out_g(.(X, [])) 4.94/2.00 ordered_in_g(.(X, .(Y, Xs))) -> U1_g(X, Y, Xs, le_in_gg(X, Y)) 4.94/2.00 le_in_gg(s(X), s(Y)) -> U3_gg(X, Y, le_in_gg(X, Y)) 4.94/2.00 le_in_gg(0, s(0)) -> le_out_gg(0, s(0)) 4.94/2.00 le_in_gg(0, 0) -> le_out_gg(0, 0) 4.94/2.00 U3_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 4.94/2.00 U1_g(X, Y, Xs, le_out_gg(X, Y)) -> U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs))) 4.94/2.00 U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) -> ordered_out_g(.(X, .(Y, Xs))) 4.94/2.00 4.94/2.00 The argument filtering Pi contains the following mapping: 4.94/2.00 ordered_in_g(x1) = ordered_in_g(x1) 4.94/2.00 4.94/2.00 [] = [] 4.94/2.00 4.94/2.00 ordered_out_g(x1) = ordered_out_g 4.94/2.00 4.94/2.00 .(x1, x2) = .(x1, x2) 4.94/2.00 4.94/2.00 U1_g(x1, x2, x3, x4) = U1_g(x2, x3, x4) 4.94/2.00 4.94/2.00 le_in_gg(x1, x2) = le_in_gg(x1, x2) 4.94/2.00 4.94/2.00 s(x1) = s(x1) 4.94/2.00 4.94/2.00 U3_gg(x1, x2, x3) = U3_gg(x3) 4.94/2.00 4.94/2.00 0 = 0 4.94/2.00 4.94/2.00 le_out_gg(x1, x2) = le_out_gg 4.94/2.00 4.94/2.00 U2_g(x1, x2, x3, x4) = U2_g(x4) 4.94/2.00 4.94/2.00 4.94/2.00 4.94/2.00 4.94/2.00 4.94/2.00 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 4.94/2.00 4.94/2.00 4.94/2.00 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (2) 4.94/2.00 Obligation: 4.94/2.00 Pi-finite rewrite system: 4.94/2.00 The TRS R consists of the following rules: 4.94/2.00 4.94/2.00 ordered_in_g([]) -> ordered_out_g([]) 4.94/2.00 ordered_in_g(.(X, [])) -> ordered_out_g(.(X, [])) 4.94/2.00 ordered_in_g(.(X, .(Y, Xs))) -> U1_g(X, Y, Xs, le_in_gg(X, Y)) 4.94/2.00 le_in_gg(s(X), s(Y)) -> U3_gg(X, Y, le_in_gg(X, Y)) 4.94/2.00 le_in_gg(0, s(0)) -> le_out_gg(0, s(0)) 4.94/2.00 le_in_gg(0, 0) -> le_out_gg(0, 0) 4.94/2.00 U3_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 4.94/2.00 U1_g(X, Y, Xs, le_out_gg(X, Y)) -> U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs))) 4.94/2.00 U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) -> ordered_out_g(.(X, .(Y, Xs))) 4.94/2.00 4.94/2.00 The argument filtering Pi contains the following mapping: 4.94/2.00 ordered_in_g(x1) = ordered_in_g(x1) 4.94/2.00 4.94/2.00 [] = [] 4.94/2.00 4.94/2.00 ordered_out_g(x1) = ordered_out_g 4.94/2.00 4.94/2.00 .(x1, x2) = .(x1, x2) 4.94/2.00 4.94/2.00 U1_g(x1, x2, x3, x4) = U1_g(x2, x3, x4) 4.94/2.00 4.94/2.00 le_in_gg(x1, x2) = le_in_gg(x1, x2) 4.94/2.00 4.94/2.00 s(x1) = s(x1) 4.94/2.00 4.94/2.00 U3_gg(x1, x2, x3) = U3_gg(x3) 4.94/2.00 4.94/2.00 0 = 0 4.94/2.00 4.94/2.00 le_out_gg(x1, x2) = le_out_gg 4.94/2.00 4.94/2.00 U2_g(x1, x2, x3, x4) = U2_g(x4) 4.94/2.00 4.94/2.00 4.94/2.00 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (3) DependencyPairsProof (EQUIVALENT) 4.94/2.00 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 4.94/2.00 Pi DP problem: 4.94/2.00 The TRS P consists of the following rules: 4.94/2.00 4.94/2.00 ORDERED_IN_G(.(X, .(Y, Xs))) -> U1_G(X, Y, Xs, le_in_gg(X, Y)) 4.94/2.00 ORDERED_IN_G(.(X, .(Y, Xs))) -> LE_IN_GG(X, Y) 4.94/2.00 LE_IN_GG(s(X), s(Y)) -> U3_GG(X, Y, le_in_gg(X, Y)) 4.94/2.00 LE_IN_GG(s(X), s(Y)) -> LE_IN_GG(X, Y) 4.94/2.00 U1_G(X, Y, Xs, le_out_gg(X, Y)) -> U2_G(X, Y, Xs, ordered_in_g(.(Y, Xs))) 4.94/2.00 U1_G(X, Y, Xs, le_out_gg(X, Y)) -> ORDERED_IN_G(.(Y, Xs)) 4.94/2.00 4.94/2.00 The TRS R consists of the following rules: 4.94/2.00 4.94/2.00 ordered_in_g([]) -> ordered_out_g([]) 4.94/2.00 ordered_in_g(.(X, [])) -> ordered_out_g(.(X, [])) 4.94/2.00 ordered_in_g(.(X, .(Y, Xs))) -> U1_g(X, Y, Xs, le_in_gg(X, Y)) 4.94/2.00 le_in_gg(s(X), s(Y)) -> U3_gg(X, Y, le_in_gg(X, Y)) 4.94/2.00 le_in_gg(0, s(0)) -> le_out_gg(0, s(0)) 4.94/2.00 le_in_gg(0, 0) -> le_out_gg(0, 0) 4.94/2.00 U3_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 4.94/2.00 U1_g(X, Y, Xs, le_out_gg(X, Y)) -> U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs))) 4.94/2.00 U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) -> ordered_out_g(.(X, .(Y, Xs))) 4.94/2.00 4.94/2.00 The argument filtering Pi contains the following mapping: 4.94/2.00 ordered_in_g(x1) = ordered_in_g(x1) 4.94/2.00 4.94/2.00 [] = [] 4.94/2.00 4.94/2.00 ordered_out_g(x1) = ordered_out_g 4.94/2.00 4.94/2.00 .(x1, x2) = .(x1, x2) 4.94/2.00 4.94/2.00 U1_g(x1, x2, x3, x4) = U1_g(x2, x3, x4) 4.94/2.00 4.94/2.00 le_in_gg(x1, x2) = le_in_gg(x1, x2) 4.94/2.00 4.94/2.00 s(x1) = s(x1) 4.94/2.00 4.94/2.00 U3_gg(x1, x2, x3) = U3_gg(x3) 4.94/2.00 4.94/2.00 0 = 0 4.94/2.00 4.94/2.00 le_out_gg(x1, x2) = le_out_gg 4.94/2.00 4.94/2.00 U2_g(x1, x2, x3, x4) = U2_g(x4) 4.94/2.00 4.94/2.00 ORDERED_IN_G(x1) = ORDERED_IN_G(x1) 4.94/2.00 4.94/2.00 U1_G(x1, x2, x3, x4) = U1_G(x2, x3, x4) 4.94/2.00 4.94/2.00 LE_IN_GG(x1, x2) = LE_IN_GG(x1, x2) 4.94/2.00 4.94/2.00 U3_GG(x1, x2, x3) = U3_GG(x3) 4.94/2.00 4.94/2.00 U2_G(x1, x2, x3, x4) = U2_G(x4) 4.94/2.00 4.94/2.00 4.94/2.00 We have to consider all (P,R,Pi)-chains 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (4) 4.94/2.00 Obligation: 4.94/2.00 Pi DP problem: 4.94/2.00 The TRS P consists of the following rules: 4.94/2.00 4.94/2.00 ORDERED_IN_G(.(X, .(Y, Xs))) -> U1_G(X, Y, Xs, le_in_gg(X, Y)) 4.94/2.00 ORDERED_IN_G(.(X, .(Y, Xs))) -> LE_IN_GG(X, Y) 4.94/2.00 LE_IN_GG(s(X), s(Y)) -> U3_GG(X, Y, le_in_gg(X, Y)) 4.94/2.00 LE_IN_GG(s(X), s(Y)) -> LE_IN_GG(X, Y) 4.94/2.00 U1_G(X, Y, Xs, le_out_gg(X, Y)) -> U2_G(X, Y, Xs, ordered_in_g(.(Y, Xs))) 4.94/2.00 U1_G(X, Y, Xs, le_out_gg(X, Y)) -> ORDERED_IN_G(.(Y, Xs)) 4.94/2.00 4.94/2.00 The TRS R consists of the following rules: 4.94/2.00 4.94/2.00 ordered_in_g([]) -> ordered_out_g([]) 4.94/2.00 ordered_in_g(.(X, [])) -> ordered_out_g(.(X, [])) 4.94/2.00 ordered_in_g(.(X, .(Y, Xs))) -> U1_g(X, Y, Xs, le_in_gg(X, Y)) 4.94/2.00 le_in_gg(s(X), s(Y)) -> U3_gg(X, Y, le_in_gg(X, Y)) 4.94/2.00 le_in_gg(0, s(0)) -> le_out_gg(0, s(0)) 4.94/2.00 le_in_gg(0, 0) -> le_out_gg(0, 0) 4.94/2.00 U3_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 4.94/2.00 U1_g(X, Y, Xs, le_out_gg(X, Y)) -> U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs))) 4.94/2.00 U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) -> ordered_out_g(.(X, .(Y, Xs))) 4.94/2.00 4.94/2.00 The argument filtering Pi contains the following mapping: 4.94/2.00 ordered_in_g(x1) = ordered_in_g(x1) 4.94/2.00 4.94/2.00 [] = [] 4.94/2.00 4.94/2.00 ordered_out_g(x1) = ordered_out_g 4.94/2.00 4.94/2.00 .(x1, x2) = .(x1, x2) 4.94/2.00 4.94/2.00 U1_g(x1, x2, x3, x4) = U1_g(x2, x3, x4) 4.94/2.00 4.94/2.00 le_in_gg(x1, x2) = le_in_gg(x1, x2) 4.94/2.00 4.94/2.00 s(x1) = s(x1) 4.94/2.00 4.94/2.00 U3_gg(x1, x2, x3) = U3_gg(x3) 4.94/2.00 4.94/2.00 0 = 0 4.94/2.00 4.94/2.00 le_out_gg(x1, x2) = le_out_gg 4.94/2.00 4.94/2.00 U2_g(x1, x2, x3, x4) = U2_g(x4) 4.94/2.00 4.94/2.00 ORDERED_IN_G(x1) = ORDERED_IN_G(x1) 4.94/2.00 4.94/2.00 U1_G(x1, x2, x3, x4) = U1_G(x2, x3, x4) 4.94/2.00 4.94/2.00 LE_IN_GG(x1, x2) = LE_IN_GG(x1, x2) 4.94/2.00 4.94/2.00 U3_GG(x1, x2, x3) = U3_GG(x3) 4.94/2.00 4.94/2.00 U2_G(x1, x2, x3, x4) = U2_G(x4) 4.94/2.00 4.94/2.00 4.94/2.00 We have to consider all (P,R,Pi)-chains 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (5) DependencyGraphProof (EQUIVALENT) 4.94/2.00 The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes. 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (6) 4.94/2.00 Complex Obligation (AND) 4.94/2.00 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (7) 4.94/2.00 Obligation: 4.94/2.00 Pi DP problem: 4.94/2.00 The TRS P consists of the following rules: 4.94/2.00 4.94/2.00 LE_IN_GG(s(X), s(Y)) -> LE_IN_GG(X, Y) 4.94/2.00 4.94/2.00 The TRS R consists of the following rules: 4.94/2.00 4.94/2.00 ordered_in_g([]) -> ordered_out_g([]) 4.94/2.00 ordered_in_g(.(X, [])) -> ordered_out_g(.(X, [])) 4.94/2.00 ordered_in_g(.(X, .(Y, Xs))) -> U1_g(X, Y, Xs, le_in_gg(X, Y)) 4.94/2.00 le_in_gg(s(X), s(Y)) -> U3_gg(X, Y, le_in_gg(X, Y)) 4.94/2.00 le_in_gg(0, s(0)) -> le_out_gg(0, s(0)) 4.94/2.00 le_in_gg(0, 0) -> le_out_gg(0, 0) 4.94/2.00 U3_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 4.94/2.00 U1_g(X, Y, Xs, le_out_gg(X, Y)) -> U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs))) 4.94/2.00 U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) -> ordered_out_g(.(X, .(Y, Xs))) 4.94/2.00 4.94/2.00 The argument filtering Pi contains the following mapping: 4.94/2.00 ordered_in_g(x1) = ordered_in_g(x1) 4.94/2.00 4.94/2.00 [] = [] 4.94/2.00 4.94/2.00 ordered_out_g(x1) = ordered_out_g 4.94/2.00 4.94/2.00 .(x1, x2) = .(x1, x2) 4.94/2.00 4.94/2.00 U1_g(x1, x2, x3, x4) = U1_g(x2, x3, x4) 4.94/2.00 4.94/2.00 le_in_gg(x1, x2) = le_in_gg(x1, x2) 4.94/2.00 4.94/2.00 s(x1) = s(x1) 4.94/2.00 4.94/2.00 U3_gg(x1, x2, x3) = U3_gg(x3) 4.94/2.00 4.94/2.00 0 = 0 4.94/2.00 4.94/2.00 le_out_gg(x1, x2) = le_out_gg 4.94/2.00 4.94/2.00 U2_g(x1, x2, x3, x4) = U2_g(x4) 4.94/2.00 4.94/2.00 LE_IN_GG(x1, x2) = LE_IN_GG(x1, x2) 4.94/2.00 4.94/2.00 4.94/2.00 We have to consider all (P,R,Pi)-chains 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (8) UsableRulesProof (EQUIVALENT) 4.94/2.00 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (9) 4.94/2.00 Obligation: 4.94/2.00 Pi DP problem: 4.94/2.00 The TRS P consists of the following rules: 4.94/2.00 4.94/2.00 LE_IN_GG(s(X), s(Y)) -> LE_IN_GG(X, Y) 4.94/2.00 4.94/2.00 R is empty. 4.94/2.00 Pi is empty. 4.94/2.00 We have to consider all (P,R,Pi)-chains 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (10) PiDPToQDPProof (EQUIVALENT) 4.94/2.00 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (11) 4.94/2.00 Obligation: 4.94/2.00 Q DP problem: 4.94/2.00 The TRS P consists of the following rules: 4.94/2.00 4.94/2.00 LE_IN_GG(s(X), s(Y)) -> LE_IN_GG(X, Y) 4.94/2.00 4.94/2.00 R is empty. 4.94/2.00 Q is empty. 4.94/2.00 We have to consider all (P,Q,R)-chains. 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (12) QDPSizeChangeProof (EQUIVALENT) 4.94/2.00 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 4.94/2.00 4.94/2.00 From the DPs we obtained the following set of size-change graphs: 4.94/2.00 *LE_IN_GG(s(X), s(Y)) -> LE_IN_GG(X, Y) 4.94/2.00 The graph contains the following edges 1 > 1, 2 > 2 4.94/2.00 4.94/2.00 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (13) 4.94/2.00 YES 4.94/2.00 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (14) 4.94/2.00 Obligation: 4.94/2.00 Pi DP problem: 4.94/2.00 The TRS P consists of the following rules: 4.94/2.00 4.94/2.00 U1_G(X, Y, Xs, le_out_gg(X, Y)) -> ORDERED_IN_G(.(Y, Xs)) 4.94/2.00 ORDERED_IN_G(.(X, .(Y, Xs))) -> U1_G(X, Y, Xs, le_in_gg(X, Y)) 4.94/2.00 4.94/2.00 The TRS R consists of the following rules: 4.94/2.00 4.94/2.00 ordered_in_g([]) -> ordered_out_g([]) 4.94/2.00 ordered_in_g(.(X, [])) -> ordered_out_g(.(X, [])) 4.94/2.00 ordered_in_g(.(X, .(Y, Xs))) -> U1_g(X, Y, Xs, le_in_gg(X, Y)) 4.94/2.00 le_in_gg(s(X), s(Y)) -> U3_gg(X, Y, le_in_gg(X, Y)) 4.94/2.00 le_in_gg(0, s(0)) -> le_out_gg(0, s(0)) 4.94/2.00 le_in_gg(0, 0) -> le_out_gg(0, 0) 4.94/2.00 U3_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 4.94/2.00 U1_g(X, Y, Xs, le_out_gg(X, Y)) -> U2_g(X, Y, Xs, ordered_in_g(.(Y, Xs))) 4.94/2.00 U2_g(X, Y, Xs, ordered_out_g(.(Y, Xs))) -> ordered_out_g(.(X, .(Y, Xs))) 4.94/2.00 4.94/2.00 The argument filtering Pi contains the following mapping: 4.94/2.00 ordered_in_g(x1) = ordered_in_g(x1) 4.94/2.00 4.94/2.00 [] = [] 4.94/2.00 4.94/2.00 ordered_out_g(x1) = ordered_out_g 4.94/2.00 4.94/2.00 .(x1, x2) = .(x1, x2) 4.94/2.00 4.94/2.00 U1_g(x1, x2, x3, x4) = U1_g(x2, x3, x4) 4.94/2.00 4.94/2.00 le_in_gg(x1, x2) = le_in_gg(x1, x2) 4.94/2.00 4.94/2.00 s(x1) = s(x1) 4.94/2.00 4.94/2.00 U3_gg(x1, x2, x3) = U3_gg(x3) 4.94/2.00 4.94/2.00 0 = 0 4.94/2.00 4.94/2.00 le_out_gg(x1, x2) = le_out_gg 4.94/2.00 4.94/2.00 U2_g(x1, x2, x3, x4) = U2_g(x4) 4.94/2.00 4.94/2.00 ORDERED_IN_G(x1) = ORDERED_IN_G(x1) 4.94/2.00 4.94/2.00 U1_G(x1, x2, x3, x4) = U1_G(x2, x3, x4) 4.94/2.00 4.94/2.00 4.94/2.00 We have to consider all (P,R,Pi)-chains 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (15) UsableRulesProof (EQUIVALENT) 4.94/2.00 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (16) 4.94/2.00 Obligation: 4.94/2.00 Pi DP problem: 4.94/2.00 The TRS P consists of the following rules: 4.94/2.00 4.94/2.00 U1_G(X, Y, Xs, le_out_gg(X, Y)) -> ORDERED_IN_G(.(Y, Xs)) 4.94/2.00 ORDERED_IN_G(.(X, .(Y, Xs))) -> U1_G(X, Y, Xs, le_in_gg(X, Y)) 4.94/2.00 4.94/2.00 The TRS R consists of the following rules: 4.94/2.00 4.94/2.00 le_in_gg(s(X), s(Y)) -> U3_gg(X, Y, le_in_gg(X, Y)) 4.94/2.00 le_in_gg(0, s(0)) -> le_out_gg(0, s(0)) 4.94/2.00 le_in_gg(0, 0) -> le_out_gg(0, 0) 4.94/2.00 U3_gg(X, Y, le_out_gg(X, Y)) -> le_out_gg(s(X), s(Y)) 4.94/2.00 4.94/2.00 The argument filtering Pi contains the following mapping: 4.94/2.00 .(x1, x2) = .(x1, x2) 4.94/2.00 4.94/2.00 le_in_gg(x1, x2) = le_in_gg(x1, x2) 4.94/2.00 4.94/2.00 s(x1) = s(x1) 4.94/2.00 4.94/2.00 U3_gg(x1, x2, x3) = U3_gg(x3) 4.94/2.00 4.94/2.00 0 = 0 4.94/2.00 4.94/2.00 le_out_gg(x1, x2) = le_out_gg 4.94/2.00 4.94/2.00 ORDERED_IN_G(x1) = ORDERED_IN_G(x1) 4.94/2.00 4.94/2.00 U1_G(x1, x2, x3, x4) = U1_G(x2, x3, x4) 4.94/2.00 4.94/2.00 4.94/2.00 We have to consider all (P,R,Pi)-chains 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (17) PiDPToQDPProof (SOUND) 4.94/2.00 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (18) 4.94/2.00 Obligation: 4.94/2.00 Q DP problem: 4.94/2.00 The TRS P consists of the following rules: 4.94/2.00 4.94/2.00 U1_G(Y, Xs, le_out_gg) -> ORDERED_IN_G(.(Y, Xs)) 4.94/2.00 ORDERED_IN_G(.(X, .(Y, Xs))) -> U1_G(Y, Xs, le_in_gg(X, Y)) 4.94/2.00 4.94/2.00 The TRS R consists of the following rules: 4.94/2.00 4.94/2.00 le_in_gg(s(X), s(Y)) -> U3_gg(le_in_gg(X, Y)) 4.94/2.00 le_in_gg(0, s(0)) -> le_out_gg 4.94/2.00 le_in_gg(0, 0) -> le_out_gg 4.94/2.00 U3_gg(le_out_gg) -> le_out_gg 4.94/2.00 4.94/2.00 The set Q consists of the following terms: 4.94/2.00 4.94/2.00 le_in_gg(x0, x1) 4.94/2.00 U3_gg(x0) 4.94/2.00 4.94/2.00 We have to consider all (P,Q,R)-chains. 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (19) UsableRulesReductionPairsProof (EQUIVALENT) 4.94/2.00 By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well. 4.94/2.00 4.94/2.00 No dependency pairs are removed. 4.94/2.00 4.94/2.00 The following rules are removed from R: 4.94/2.00 4.94/2.00 le_in_gg(s(X), s(Y)) -> U3_gg(le_in_gg(X, Y)) 4.94/2.00 le_in_gg(0, s(0)) -> le_out_gg 4.94/2.00 le_in_gg(0, 0) -> le_out_gg 4.94/2.00 Used ordering: POLO with Polynomial interpretation [POLO]: 4.94/2.00 4.94/2.00 POL(.(x_1, x_2)) = 2*x_1 + 2*x_2 4.94/2.00 POL(0) = 0 4.94/2.00 POL(ORDERED_IN_G(x_1)) = x_1 4.94/2.00 POL(U1_G(x_1, x_2, x_3)) = 2*x_1 + 2*x_2 + 2*x_3 4.94/2.00 POL(U3_gg(x_1)) = x_1 4.94/2.00 POL(le_in_gg(x_1, x_2)) = x_1 + x_2 4.94/2.00 POL(le_out_gg) = 0 4.94/2.00 POL(s(x_1)) = x_1 4.94/2.00 4.94/2.00 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (20) 4.94/2.00 Obligation: 4.94/2.00 Q DP problem: 4.94/2.00 The TRS P consists of the following rules: 4.94/2.00 4.94/2.00 U1_G(Y, Xs, le_out_gg) -> ORDERED_IN_G(.(Y, Xs)) 4.94/2.00 ORDERED_IN_G(.(X, .(Y, Xs))) -> U1_G(Y, Xs, le_in_gg(X, Y)) 4.94/2.00 4.94/2.00 The TRS R consists of the following rules: 4.94/2.00 4.94/2.00 U3_gg(le_out_gg) -> le_out_gg 4.94/2.00 4.94/2.00 The set Q consists of the following terms: 4.94/2.00 4.94/2.00 le_in_gg(x0, x1) 4.94/2.00 U3_gg(x0) 4.94/2.00 4.94/2.00 We have to consider all (P,Q,R)-chains. 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (21) DependencyGraphProof (EQUIVALENT) 4.94/2.00 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes. 4.94/2.00 ---------------------------------------- 4.94/2.00 4.94/2.00 (22) 4.94/2.00 TRUE 4.94/2.04 EOF