3.43/1.66 YES 3.43/1.67 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 3.43/1.67 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.43/1.67 3.43/1.67 3.43/1.67 Left Termination of the query pattern 3.43/1.67 3.43/1.67 prefix(g,a) 3.43/1.67 3.43/1.67 w.r.t. the given Prolog program could successfully be proven: 3.43/1.67 3.43/1.67 (0) Prolog 3.43/1.67 (1) PrologToPiTRSProof [SOUND, 0 ms] 3.43/1.67 (2) PiTRS 3.43/1.67 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 3.43/1.67 (4) PiDP 3.43/1.67 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 3.43/1.67 (6) PiDP 3.43/1.67 (7) UsableRulesProof [EQUIVALENT, 0 ms] 3.43/1.67 (8) PiDP 3.43/1.67 (9) PiDPToQDPProof [SOUND, 8 ms] 3.43/1.67 (10) QDP 3.43/1.67 (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.43/1.67 (12) YES 3.43/1.67 3.43/1.67 3.43/1.67 ---------------------------------------- 3.43/1.67 3.43/1.67 (0) 3.43/1.67 Obligation: 3.43/1.67 Clauses: 3.43/1.67 3.43/1.67 prefix(Xs, Ys) :- app(Xs, X1, Ys). 3.43/1.67 app([], X, X). 3.43/1.67 app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs). 3.43/1.67 3.43/1.67 3.43/1.67 Query: prefix(g,a) 3.43/1.67 ---------------------------------------- 3.43/1.67 3.43/1.67 (1) PrologToPiTRSProof (SOUND) 3.43/1.67 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 3.43/1.67 3.43/1.67 prefix_in_2: (b,f) 3.43/1.67 3.43/1.67 app_in_3: (b,f,f) 3.43/1.67 3.43/1.67 Transforming Prolog into the following Term Rewriting System: 3.43/1.67 3.43/1.67 Pi-finite rewrite system: 3.43/1.67 The TRS R consists of the following rules: 3.43/1.67 3.43/1.67 prefix_in_ga(Xs, Ys) -> U1_ga(Xs, Ys, app_in_gaa(Xs, X1, Ys)) 3.43/1.67 app_in_gaa([], X, X) -> app_out_gaa([], X, X) 3.43/1.67 app_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U2_gaa(X, Xs, Ys, Zs, app_in_gaa(Xs, Ys, Zs)) 3.43/1.67 U2_gaa(X, Xs, Ys, Zs, app_out_gaa(Xs, Ys, Zs)) -> app_out_gaa(.(X, Xs), Ys, .(X, Zs)) 3.43/1.67 U1_ga(Xs, Ys, app_out_gaa(Xs, X1, Ys)) -> prefix_out_ga(Xs, Ys) 3.43/1.67 3.43/1.67 The argument filtering Pi contains the following mapping: 3.43/1.67 prefix_in_ga(x1, x2) = prefix_in_ga(x1) 3.43/1.67 3.43/1.67 U1_ga(x1, x2, x3) = U1_ga(x3) 3.43/1.67 3.43/1.67 app_in_gaa(x1, x2, x3) = app_in_gaa(x1) 3.43/1.67 3.43/1.67 [] = [] 3.43/1.67 3.43/1.67 app_out_gaa(x1, x2, x3) = app_out_gaa 3.43/1.67 3.43/1.67 .(x1, x2) = .(x1, x2) 3.43/1.67 3.43/1.67 U2_gaa(x1, x2, x3, x4, x5) = U2_gaa(x5) 3.43/1.67 3.43/1.67 prefix_out_ga(x1, x2) = prefix_out_ga 3.43/1.67 3.43/1.67 3.43/1.67 3.43/1.67 3.43/1.67 3.43/1.67 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 3.43/1.67 3.43/1.67 3.43/1.67 3.43/1.67 ---------------------------------------- 3.43/1.67 3.43/1.67 (2) 3.43/1.67 Obligation: 3.43/1.67 Pi-finite rewrite system: 3.43/1.67 The TRS R consists of the following rules: 3.43/1.67 3.43/1.67 prefix_in_ga(Xs, Ys) -> U1_ga(Xs, Ys, app_in_gaa(Xs, X1, Ys)) 3.43/1.67 app_in_gaa([], X, X) -> app_out_gaa([], X, X) 3.43/1.67 app_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U2_gaa(X, Xs, Ys, Zs, app_in_gaa(Xs, Ys, Zs)) 3.43/1.67 U2_gaa(X, Xs, Ys, Zs, app_out_gaa(Xs, Ys, Zs)) -> app_out_gaa(.(X, Xs), Ys, .(X, Zs)) 3.43/1.67 U1_ga(Xs, Ys, app_out_gaa(Xs, X1, Ys)) -> prefix_out_ga(Xs, Ys) 3.43/1.67 3.43/1.67 The argument filtering Pi contains the following mapping: 3.43/1.67 prefix_in_ga(x1, x2) = prefix_in_ga(x1) 3.43/1.67 3.43/1.67 U1_ga(x1, x2, x3) = U1_ga(x3) 3.43/1.67 3.43/1.67 app_in_gaa(x1, x2, x3) = app_in_gaa(x1) 3.43/1.67 3.43/1.67 [] = [] 3.43/1.67 3.43/1.67 app_out_gaa(x1, x2, x3) = app_out_gaa 3.43/1.67 3.43/1.67 .(x1, x2) = .(x1, x2) 3.43/1.67 3.43/1.67 U2_gaa(x1, x2, x3, x4, x5) = U2_gaa(x5) 3.43/1.67 3.43/1.67 prefix_out_ga(x1, x2) = prefix_out_ga 3.43/1.67 3.43/1.67 3.43/1.67 3.43/1.67 ---------------------------------------- 3.43/1.67 3.43/1.67 (3) DependencyPairsProof (EQUIVALENT) 3.43/1.67 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 3.43/1.67 Pi DP problem: 3.43/1.67 The TRS P consists of the following rules: 3.43/1.67 3.43/1.67 PREFIX_IN_GA(Xs, Ys) -> U1_GA(Xs, Ys, app_in_gaa(Xs, X1, Ys)) 3.43/1.67 PREFIX_IN_GA(Xs, Ys) -> APP_IN_GAA(Xs, X1, Ys) 3.43/1.67 APP_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> U2_GAA(X, Xs, Ys, Zs, app_in_gaa(Xs, Ys, Zs)) 3.43/1.67 APP_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_GAA(Xs, Ys, Zs) 3.43/1.67 3.43/1.67 The TRS R consists of the following rules: 3.43/1.67 3.43/1.67 prefix_in_ga(Xs, Ys) -> U1_ga(Xs, Ys, app_in_gaa(Xs, X1, Ys)) 3.43/1.67 app_in_gaa([], X, X) -> app_out_gaa([], X, X) 3.43/1.67 app_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U2_gaa(X, Xs, Ys, Zs, app_in_gaa(Xs, Ys, Zs)) 3.43/1.67 U2_gaa(X, Xs, Ys, Zs, app_out_gaa(Xs, Ys, Zs)) -> app_out_gaa(.(X, Xs), Ys, .(X, Zs)) 3.43/1.67 U1_ga(Xs, Ys, app_out_gaa(Xs, X1, Ys)) -> prefix_out_ga(Xs, Ys) 3.43/1.67 3.43/1.67 The argument filtering Pi contains the following mapping: 3.43/1.67 prefix_in_ga(x1, x2) = prefix_in_ga(x1) 3.43/1.67 3.43/1.67 U1_ga(x1, x2, x3) = U1_ga(x3) 3.43/1.67 3.43/1.67 app_in_gaa(x1, x2, x3) = app_in_gaa(x1) 3.43/1.67 3.43/1.67 [] = [] 3.43/1.67 3.43/1.67 app_out_gaa(x1, x2, x3) = app_out_gaa 3.43/1.67 3.43/1.67 .(x1, x2) = .(x1, x2) 3.43/1.67 3.43/1.67 U2_gaa(x1, x2, x3, x4, x5) = U2_gaa(x5) 3.43/1.67 3.43/1.67 prefix_out_ga(x1, x2) = prefix_out_ga 3.43/1.67 3.43/1.67 PREFIX_IN_GA(x1, x2) = PREFIX_IN_GA(x1) 3.43/1.67 3.43/1.67 U1_GA(x1, x2, x3) = U1_GA(x3) 3.43/1.67 3.43/1.67 APP_IN_GAA(x1, x2, x3) = APP_IN_GAA'(x1) 3.43/1.67 3.43/1.67 U2_GAA(x1, x2, x3, x4, x5) = U2_GAA(x5) 3.43/1.67 3.43/1.67 3.43/1.67 We have to consider all (P,R,Pi)-chains 3.43/1.67 ---------------------------------------- 3.43/1.67 3.43/1.67 (4) 3.43/1.67 Obligation: 3.43/1.67 Pi DP problem: 3.43/1.67 The TRS P consists of the following rules: 3.43/1.67 3.43/1.67 PREFIX_IN_GA(Xs, Ys) -> U1_GA(Xs, Ys, app_in_gaa(Xs, X1, Ys)) 3.43/1.67 PREFIX_IN_GA(Xs, Ys) -> APP_IN_GAA(Xs, X1, Ys) 3.43/1.67 APP_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> U2_GAA(X, Xs, Ys, Zs, app_in_gaa(Xs, Ys, Zs)) 3.43/1.67 APP_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_GAA(Xs, Ys, Zs) 3.43/1.67 3.43/1.67 The TRS R consists of the following rules: 3.43/1.67 3.43/1.67 prefix_in_ga(Xs, Ys) -> U1_ga(Xs, Ys, app_in_gaa(Xs, X1, Ys)) 3.43/1.67 app_in_gaa([], X, X) -> app_out_gaa([], X, X) 3.43/1.67 app_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U2_gaa(X, Xs, Ys, Zs, app_in_gaa(Xs, Ys, Zs)) 3.43/1.67 U2_gaa(X, Xs, Ys, Zs, app_out_gaa(Xs, Ys, Zs)) -> app_out_gaa(.(X, Xs), Ys, .(X, Zs)) 3.43/1.67 U1_ga(Xs, Ys, app_out_gaa(Xs, X1, Ys)) -> prefix_out_ga(Xs, Ys) 3.43/1.67 3.43/1.67 The argument filtering Pi contains the following mapping: 3.43/1.67 prefix_in_ga(x1, x2) = prefix_in_ga(x1) 3.43/1.67 3.43/1.67 U1_ga(x1, x2, x3) = U1_ga(x3) 3.43/1.67 3.43/1.67 app_in_gaa(x1, x2, x3) = app_in_gaa(x1) 3.43/1.67 3.43/1.67 [] = [] 3.43/1.67 3.43/1.67 app_out_gaa(x1, x2, x3) = app_out_gaa 3.43/1.67 3.43/1.67 .(x1, x2) = .(x1, x2) 3.43/1.67 3.43/1.67 U2_gaa(x1, x2, x3, x4, x5) = U2_gaa(x5) 3.43/1.67 3.43/1.67 prefix_out_ga(x1, x2) = prefix_out_ga 3.43/1.67 3.43/1.67 PREFIX_IN_GA(x1, x2) = PREFIX_IN_GA(x1) 3.43/1.67 3.43/1.67 U1_GA(x1, x2, x3) = U1_GA(x3) 3.43/1.67 3.43/1.67 APP_IN_GAA(x1, x2, x3) = APP_IN_GAA(x1) 3.43/1.67 3.43/1.67 U2_GAA(x1, x2, x3, x4, x5) = U2_GAA(x5) 3.43/1.67 3.43/1.67 3.43/1.67 We have to consider all (P,R,Pi)-chains 3.43/1.67 ---------------------------------------- 3.43/1.67 3.43/1.67 (5) DependencyGraphProof (EQUIVALENT) 3.43/1.67 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes. 3.43/1.67 ---------------------------------------- 3.43/1.67 3.43/1.67 (6) 3.43/1.67 Obligation: 3.43/1.67 Pi DP problem: 3.43/1.67 The TRS P consists of the following rules: 3.43/1.67 3.43/1.67 APP_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_GAA(Xs, Ys, Zs) 3.43/1.67 3.43/1.67 The TRS R consists of the following rules: 3.43/1.67 3.43/1.67 prefix_in_ga(Xs, Ys) -> U1_ga(Xs, Ys, app_in_gaa(Xs, X1, Ys)) 3.43/1.67 app_in_gaa([], X, X) -> app_out_gaa([], X, X) 3.43/1.67 app_in_gaa(.(X, Xs), Ys, .(X, Zs)) -> U2_gaa(X, Xs, Ys, Zs, app_in_gaa(Xs, Ys, Zs)) 3.43/1.67 U2_gaa(X, Xs, Ys, Zs, app_out_gaa(Xs, Ys, Zs)) -> app_out_gaa(.(X, Xs), Ys, .(X, Zs)) 3.43/1.67 U1_ga(Xs, Ys, app_out_gaa(Xs, X1, Ys)) -> prefix_out_ga(Xs, Ys) 3.43/1.67 3.43/1.67 The argument filtering Pi contains the following mapping: 3.43/1.67 prefix_in_ga(x1, x2) = prefix_in_ga(x1) 3.43/1.67 3.43/1.67 U1_ga(x1, x2, x3) = U1_ga(x3) 3.43/1.67 3.43/1.67 app_in_gaa(x1, x2, x3) = app_in_gaa(x1) 3.43/1.67 3.43/1.67 [] = [] 3.43/1.67 3.43/1.67 app_out_gaa(x1, x2, x3) = app_out_gaa 3.43/1.67 3.43/1.67 .(x1, x2) = .(x1, x2) 3.43/1.67 3.43/1.67 U2_gaa(x1, x2, x3, x4, x5) = U2_gaa(x5) 3.43/1.67 3.43/1.67 prefix_out_ga(x1, x2) = prefix_out_ga 3.43/1.67 3.43/1.67 APP_IN_GAA(x1, x2, x3) = APP_IN_GAA(x1) 3.43/1.67 3.43/1.67 3.43/1.67 We have to consider all (P,R,Pi)-chains 3.43/1.67 ---------------------------------------- 3.43/1.67 3.43/1.67 (7) UsableRulesProof (EQUIVALENT) 3.43/1.67 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.43/1.67 ---------------------------------------- 3.43/1.67 3.43/1.67 (8) 3.43/1.67 Obligation: 3.43/1.67 Pi DP problem: 3.43/1.67 The TRS P consists of the following rules: 3.43/1.67 3.43/1.67 APP_IN_GAA(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_GAA(Xs, Ys, Zs) 3.43/1.67 3.43/1.67 R is empty. 3.43/1.67 The argument filtering Pi contains the following mapping: 3.43/1.67 .(x1, x2) = .(x1, x2) 3.43/1.67 3.43/1.67 APP_IN_GAA(x1, x2, x3) = APP_IN_GAA(x1) 3.43/1.67 3.43/1.67 3.43/1.67 We have to consider all (P,R,Pi)-chains 3.43/1.67 ---------------------------------------- 3.43/1.67 3.43/1.67 (9) PiDPToQDPProof (SOUND) 3.43/1.67 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.43/1.67 ---------------------------------------- 3.43/1.67 3.43/1.67 (10) 3.43/1.67 Obligation: 3.43/1.67 Q DP problem: 3.43/1.67 The TRS P consists of the following rules: 3.43/1.67 3.43/1.67 APP_IN_GAA(.(X, Xs)) -> APP_IN_GAA(Xs) 3.43/1.67 3.43/1.67 R is empty. 3.43/1.67 Q is empty. 3.43/1.67 We have to consider all (P,Q,R)-chains. 3.43/1.67 ---------------------------------------- 3.43/1.67 3.43/1.67 (11) QDPSizeChangeProof (EQUIVALENT) 3.43/1.67 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.43/1.67 3.43/1.67 From the DPs we obtained the following set of size-change graphs: 3.43/1.67 *APP_IN_GAA(.(X, Xs)) -> APP_IN_GAA(Xs) 3.43/1.67 The graph contains the following edges 1 > 1 3.43/1.67 3.43/1.67 3.43/1.67 ---------------------------------------- 3.43/1.67 3.43/1.67 (12) 3.43/1.67 YES 3.67/1.71 EOF