3.63/1.77 YES 3.94/1.78 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 3.94/1.78 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.94/1.78 3.94/1.78 3.94/1.78 Left Termination of the query pattern 3.94/1.78 3.94/1.78 rev(g,a) 3.94/1.78 3.94/1.78 w.r.t. the given Prolog program could successfully be proven: 3.94/1.78 3.94/1.78 (0) Prolog 3.94/1.78 (1) PrologToPiTRSProof [SOUND, 0 ms] 3.94/1.78 (2) PiTRS 3.94/1.78 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 3.94/1.78 (4) PiDP 3.94/1.78 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 3.94/1.78 (6) AND 3.94/1.78 (7) PiDP 3.94/1.78 (8) UsableRulesProof [EQUIVALENT, 0 ms] 3.94/1.78 (9) PiDP 3.94/1.78 (10) PiDPToQDPProof [SOUND, 0 ms] 3.94/1.78 (11) QDP 3.94/1.78 (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.94/1.78 (13) YES 3.94/1.78 (14) PiDP 3.94/1.78 (15) UsableRulesProof [EQUIVALENT, 0 ms] 3.94/1.78 (16) PiDP 3.94/1.78 (17) PiDPToQDPProof [SOUND, 0 ms] 3.94/1.78 (18) QDP 3.94/1.78 (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.94/1.78 (20) YES 3.94/1.78 3.94/1.78 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (0) 3.94/1.78 Obligation: 3.94/1.78 Clauses: 3.94/1.78 3.94/1.78 rev([], []). 3.94/1.78 rev(.(X, Xs), Ys) :- ','(rev(Xs, Zs), app(Zs, .(X, []), Ys)). 3.94/1.78 app([], X, X). 3.94/1.78 app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs). 3.94/1.78 3.94/1.78 3.94/1.78 Query: rev(g,a) 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (1) PrologToPiTRSProof (SOUND) 3.94/1.78 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 3.94/1.78 3.94/1.78 rev_in_2: (b,f) 3.94/1.78 3.94/1.78 app_in_3: (b,b,f) 3.94/1.78 3.94/1.78 Transforming Prolog into the following Term Rewriting System: 3.94/1.78 3.94/1.78 Pi-finite rewrite system: 3.94/1.78 The TRS R consists of the following rules: 3.94/1.78 3.94/1.78 rev_in_ga([], []) -> rev_out_ga([], []) 3.94/1.78 rev_in_ga(.(X, Xs), Ys) -> U1_ga(X, Xs, Ys, rev_in_ga(Xs, Zs)) 3.94/1.78 U1_ga(X, Xs, Ys, rev_out_ga(Xs, Zs)) -> U2_ga(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 3.94/1.78 app_in_gga([], X, X) -> app_out_gga([], X, X) 3.94/1.78 app_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U3_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 3.94/1.78 U3_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) -> app_out_gga(.(X, Xs), Ys, .(X, Zs)) 3.94/1.78 U2_ga(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) -> rev_out_ga(.(X, Xs), Ys) 3.94/1.78 3.94/1.78 The argument filtering Pi contains the following mapping: 3.94/1.78 rev_in_ga(x1, x2) = rev_in_ga(x1) 3.94/1.78 3.94/1.78 [] = [] 3.94/1.78 3.94/1.78 rev_out_ga(x1, x2) = rev_out_ga(x2) 3.94/1.78 3.94/1.78 .(x1, x2) = .(x1, x2) 3.94/1.78 3.94/1.78 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 3.94/1.78 3.94/1.78 U2_ga(x1, x2, x3, x4) = U2_ga(x4) 3.94/1.78 3.94/1.78 app_in_gga(x1, x2, x3) = app_in_gga(x1, x2) 3.94/1.78 3.94/1.78 app_out_gga(x1, x2, x3) = app_out_gga(x3) 3.94/1.78 3.94/1.78 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x1, x5) 3.94/1.78 3.94/1.78 3.94/1.78 3.94/1.78 3.94/1.78 3.94/1.78 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 3.94/1.78 3.94/1.78 3.94/1.78 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (2) 3.94/1.78 Obligation: 3.94/1.78 Pi-finite rewrite system: 3.94/1.78 The TRS R consists of the following rules: 3.94/1.78 3.94/1.78 rev_in_ga([], []) -> rev_out_ga([], []) 3.94/1.78 rev_in_ga(.(X, Xs), Ys) -> U1_ga(X, Xs, Ys, rev_in_ga(Xs, Zs)) 3.94/1.78 U1_ga(X, Xs, Ys, rev_out_ga(Xs, Zs)) -> U2_ga(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 3.94/1.78 app_in_gga([], X, X) -> app_out_gga([], X, X) 3.94/1.78 app_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U3_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 3.94/1.78 U3_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) -> app_out_gga(.(X, Xs), Ys, .(X, Zs)) 3.94/1.78 U2_ga(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) -> rev_out_ga(.(X, Xs), Ys) 3.94/1.78 3.94/1.78 The argument filtering Pi contains the following mapping: 3.94/1.78 rev_in_ga(x1, x2) = rev_in_ga(x1) 3.94/1.78 3.94/1.78 [] = [] 3.94/1.78 3.94/1.78 rev_out_ga(x1, x2) = rev_out_ga(x2) 3.94/1.78 3.94/1.78 .(x1, x2) = .(x1, x2) 3.94/1.78 3.94/1.78 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 3.94/1.78 3.94/1.78 U2_ga(x1, x2, x3, x4) = U2_ga(x4) 3.94/1.78 3.94/1.78 app_in_gga(x1, x2, x3) = app_in_gga(x1, x2) 3.94/1.78 3.94/1.78 app_out_gga(x1, x2, x3) = app_out_gga(x3) 3.94/1.78 3.94/1.78 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x1, x5) 3.94/1.78 3.94/1.78 3.94/1.78 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (3) DependencyPairsProof (EQUIVALENT) 3.94/1.78 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 3.94/1.78 Pi DP problem: 3.94/1.78 The TRS P consists of the following rules: 3.94/1.78 3.94/1.78 REV_IN_GA(.(X, Xs), Ys) -> U1_GA(X, Xs, Ys, rev_in_ga(Xs, Zs)) 3.94/1.78 REV_IN_GA(.(X, Xs), Ys) -> REV_IN_GA(Xs, Zs) 3.94/1.78 U1_GA(X, Xs, Ys, rev_out_ga(Xs, Zs)) -> U2_GA(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 3.94/1.78 U1_GA(X, Xs, Ys, rev_out_ga(Xs, Zs)) -> APP_IN_GGA(Zs, .(X, []), Ys) 3.94/1.78 APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> U3_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 3.94/1.78 APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_GGA(Xs, Ys, Zs) 3.94/1.78 3.94/1.78 The TRS R consists of the following rules: 3.94/1.78 3.94/1.78 rev_in_ga([], []) -> rev_out_ga([], []) 3.94/1.78 rev_in_ga(.(X, Xs), Ys) -> U1_ga(X, Xs, Ys, rev_in_ga(Xs, Zs)) 3.94/1.78 U1_ga(X, Xs, Ys, rev_out_ga(Xs, Zs)) -> U2_ga(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 3.94/1.78 app_in_gga([], X, X) -> app_out_gga([], X, X) 3.94/1.78 app_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U3_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 3.94/1.78 U3_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) -> app_out_gga(.(X, Xs), Ys, .(X, Zs)) 3.94/1.78 U2_ga(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) -> rev_out_ga(.(X, Xs), Ys) 3.94/1.78 3.94/1.78 The argument filtering Pi contains the following mapping: 3.94/1.78 rev_in_ga(x1, x2) = rev_in_ga(x1) 3.94/1.78 3.94/1.78 [] = [] 3.94/1.78 3.94/1.78 rev_out_ga(x1, x2) = rev_out_ga(x2) 3.94/1.78 3.94/1.78 .(x1, x2) = .(x1, x2) 3.94/1.78 3.94/1.78 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 3.94/1.78 3.94/1.78 U2_ga(x1, x2, x3, x4) = U2_ga(x4) 3.94/1.78 3.94/1.78 app_in_gga(x1, x2, x3) = app_in_gga(x1, x2) 3.94/1.78 3.94/1.78 app_out_gga(x1, x2, x3) = app_out_gga(x3) 3.94/1.78 3.94/1.78 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x1, x5) 3.94/1.78 3.94/1.78 REV_IN_GA(x1, x2) = REV_IN_GA(x1) 3.94/1.78 3.94/1.78 U1_GA(x1, x2, x3, x4) = U1_GA(x1, x4) 3.94/1.78 3.94/1.78 U2_GA(x1, x2, x3, x4) = U2_GA(x4) 3.94/1.78 3.94/1.78 APP_IN_GGA(x1, x2, x3) = APP_IN_GGA(x1, x2) 3.94/1.78 3.94/1.78 U3_GGA(x1, x2, x3, x4, x5) = U3_GGA(x1, x5) 3.94/1.78 3.94/1.78 3.94/1.78 We have to consider all (P,R,Pi)-chains 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (4) 3.94/1.78 Obligation: 3.94/1.78 Pi DP problem: 3.94/1.78 The TRS P consists of the following rules: 3.94/1.78 3.94/1.78 REV_IN_GA(.(X, Xs), Ys) -> U1_GA(X, Xs, Ys, rev_in_ga(Xs, Zs)) 3.94/1.78 REV_IN_GA(.(X, Xs), Ys) -> REV_IN_GA(Xs, Zs) 3.94/1.78 U1_GA(X, Xs, Ys, rev_out_ga(Xs, Zs)) -> U2_GA(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 3.94/1.78 U1_GA(X, Xs, Ys, rev_out_ga(Xs, Zs)) -> APP_IN_GGA(Zs, .(X, []), Ys) 3.94/1.78 APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> U3_GGA(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 3.94/1.78 APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_GGA(Xs, Ys, Zs) 3.94/1.78 3.94/1.78 The TRS R consists of the following rules: 3.94/1.78 3.94/1.78 rev_in_ga([], []) -> rev_out_ga([], []) 3.94/1.78 rev_in_ga(.(X, Xs), Ys) -> U1_ga(X, Xs, Ys, rev_in_ga(Xs, Zs)) 3.94/1.78 U1_ga(X, Xs, Ys, rev_out_ga(Xs, Zs)) -> U2_ga(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 3.94/1.78 app_in_gga([], X, X) -> app_out_gga([], X, X) 3.94/1.78 app_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U3_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 3.94/1.78 U3_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) -> app_out_gga(.(X, Xs), Ys, .(X, Zs)) 3.94/1.78 U2_ga(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) -> rev_out_ga(.(X, Xs), Ys) 3.94/1.78 3.94/1.78 The argument filtering Pi contains the following mapping: 3.94/1.78 rev_in_ga(x1, x2) = rev_in_ga(x1) 3.94/1.78 3.94/1.78 [] = [] 3.94/1.78 3.94/1.78 rev_out_ga(x1, x2) = rev_out_ga(x2) 3.94/1.78 3.94/1.78 .(x1, x2) = .(x1, x2) 3.94/1.78 3.94/1.78 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 3.94/1.78 3.94/1.78 U2_ga(x1, x2, x3, x4) = U2_ga(x4) 3.94/1.78 3.94/1.78 app_in_gga(x1, x2, x3) = app_in_gga(x1, x2) 3.94/1.78 3.94/1.78 app_out_gga(x1, x2, x3) = app_out_gga(x3) 3.94/1.78 3.94/1.78 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x1, x5) 3.94/1.78 3.94/1.78 REV_IN_GA(x1, x2) = REV_IN_GA(x1) 3.94/1.78 3.94/1.78 U1_GA(x1, x2, x3, x4) = U1_GA(x1, x4) 3.94/1.78 3.94/1.78 U2_GA(x1, x2, x3, x4) = U2_GA(x4) 3.94/1.78 3.94/1.78 APP_IN_GGA(x1, x2, x3) = APP_IN_GGA(x1, x2) 3.94/1.78 3.94/1.78 U3_GGA(x1, x2, x3, x4, x5) = U3_GGA(x1, x5) 3.94/1.78 3.94/1.78 3.94/1.78 We have to consider all (P,R,Pi)-chains 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (5) DependencyGraphProof (EQUIVALENT) 3.94/1.78 The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes. 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (6) 3.94/1.78 Complex Obligation (AND) 3.94/1.78 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (7) 3.94/1.78 Obligation: 3.94/1.78 Pi DP problem: 3.94/1.78 The TRS P consists of the following rules: 3.94/1.78 3.94/1.78 APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_GGA(Xs, Ys, Zs) 3.94/1.78 3.94/1.78 The TRS R consists of the following rules: 3.94/1.78 3.94/1.78 rev_in_ga([], []) -> rev_out_ga([], []) 3.94/1.78 rev_in_ga(.(X, Xs), Ys) -> U1_ga(X, Xs, Ys, rev_in_ga(Xs, Zs)) 3.94/1.78 U1_ga(X, Xs, Ys, rev_out_ga(Xs, Zs)) -> U2_ga(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 3.94/1.78 app_in_gga([], X, X) -> app_out_gga([], X, X) 3.94/1.78 app_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U3_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 3.94/1.78 U3_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) -> app_out_gga(.(X, Xs), Ys, .(X, Zs)) 3.94/1.78 U2_ga(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) -> rev_out_ga(.(X, Xs), Ys) 3.94/1.78 3.94/1.78 The argument filtering Pi contains the following mapping: 3.94/1.78 rev_in_ga(x1, x2) = rev_in_ga(x1) 3.94/1.78 3.94/1.78 [] = [] 3.94/1.78 3.94/1.78 rev_out_ga(x1, x2) = rev_out_ga(x2) 3.94/1.78 3.94/1.78 .(x1, x2) = .(x1, x2) 3.94/1.78 3.94/1.78 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 3.94/1.78 3.94/1.78 U2_ga(x1, x2, x3, x4) = U2_ga(x4) 3.94/1.78 3.94/1.78 app_in_gga(x1, x2, x3) = app_in_gga(x1, x2) 3.94/1.78 3.94/1.78 app_out_gga(x1, x2, x3) = app_out_gga(x3) 3.94/1.78 3.94/1.78 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x1, x5) 3.94/1.78 3.94/1.78 APP_IN_GGA(x1, x2, x3) = APP_IN_GGA(x1, x2) 3.94/1.78 3.94/1.78 3.94/1.78 We have to consider all (P,R,Pi)-chains 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (8) UsableRulesProof (EQUIVALENT) 3.94/1.78 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (9) 3.94/1.78 Obligation: 3.94/1.78 Pi DP problem: 3.94/1.78 The TRS P consists of the following rules: 3.94/1.78 3.94/1.78 APP_IN_GGA(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_GGA(Xs, Ys, Zs) 3.94/1.78 3.94/1.78 R is empty. 3.94/1.78 The argument filtering Pi contains the following mapping: 3.94/1.78 .(x1, x2) = .(x1, x2) 3.94/1.78 3.94/1.78 APP_IN_GGA(x1, x2, x3) = APP_IN_GGA(x1, x2) 3.94/1.78 3.94/1.78 3.94/1.78 We have to consider all (P,R,Pi)-chains 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (10) PiDPToQDPProof (SOUND) 3.94/1.78 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (11) 3.94/1.78 Obligation: 3.94/1.78 Q DP problem: 3.94/1.78 The TRS P consists of the following rules: 3.94/1.78 3.94/1.78 APP_IN_GGA(.(X, Xs), Ys) -> APP_IN_GGA(Xs, Ys) 3.94/1.78 3.94/1.78 R is empty. 3.94/1.78 Q is empty. 3.94/1.78 We have to consider all (P,Q,R)-chains. 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (12) QDPSizeChangeProof (EQUIVALENT) 3.94/1.78 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.94/1.78 3.94/1.78 From the DPs we obtained the following set of size-change graphs: 3.94/1.78 *APP_IN_GGA(.(X, Xs), Ys) -> APP_IN_GGA(Xs, Ys) 3.94/1.78 The graph contains the following edges 1 > 1, 2 >= 2 3.94/1.78 3.94/1.78 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (13) 3.94/1.78 YES 3.94/1.78 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (14) 3.94/1.78 Obligation: 3.94/1.78 Pi DP problem: 3.94/1.78 The TRS P consists of the following rules: 3.94/1.78 3.94/1.78 REV_IN_GA(.(X, Xs), Ys) -> REV_IN_GA(Xs, Zs) 3.94/1.78 3.94/1.78 The TRS R consists of the following rules: 3.94/1.78 3.94/1.78 rev_in_ga([], []) -> rev_out_ga([], []) 3.94/1.78 rev_in_ga(.(X, Xs), Ys) -> U1_ga(X, Xs, Ys, rev_in_ga(Xs, Zs)) 3.94/1.78 U1_ga(X, Xs, Ys, rev_out_ga(Xs, Zs)) -> U2_ga(X, Xs, Ys, app_in_gga(Zs, .(X, []), Ys)) 3.94/1.78 app_in_gga([], X, X) -> app_out_gga([], X, X) 3.94/1.78 app_in_gga(.(X, Xs), Ys, .(X, Zs)) -> U3_gga(X, Xs, Ys, Zs, app_in_gga(Xs, Ys, Zs)) 3.94/1.78 U3_gga(X, Xs, Ys, Zs, app_out_gga(Xs, Ys, Zs)) -> app_out_gga(.(X, Xs), Ys, .(X, Zs)) 3.94/1.78 U2_ga(X, Xs, Ys, app_out_gga(Zs, .(X, []), Ys)) -> rev_out_ga(.(X, Xs), Ys) 3.94/1.78 3.94/1.78 The argument filtering Pi contains the following mapping: 3.94/1.78 rev_in_ga(x1, x2) = rev_in_ga(x1) 3.94/1.78 3.94/1.78 [] = [] 3.94/1.78 3.94/1.78 rev_out_ga(x1, x2) = rev_out_ga(x2) 3.94/1.78 3.94/1.78 .(x1, x2) = .(x1, x2) 3.94/1.78 3.94/1.78 U1_ga(x1, x2, x3, x4) = U1_ga(x1, x4) 3.94/1.78 3.94/1.78 U2_ga(x1, x2, x3, x4) = U2_ga(x4) 3.94/1.78 3.94/1.78 app_in_gga(x1, x2, x3) = app_in_gga(x1, x2) 3.94/1.78 3.94/1.78 app_out_gga(x1, x2, x3) = app_out_gga(x3) 3.94/1.78 3.94/1.78 U3_gga(x1, x2, x3, x4, x5) = U3_gga(x1, x5) 3.94/1.78 3.94/1.78 REV_IN_GA(x1, x2) = REV_IN_GA(x1) 3.94/1.78 3.94/1.78 3.94/1.78 We have to consider all (P,R,Pi)-chains 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (15) UsableRulesProof (EQUIVALENT) 3.94/1.78 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (16) 3.94/1.78 Obligation: 3.94/1.78 Pi DP problem: 3.94/1.78 The TRS P consists of the following rules: 3.94/1.78 3.94/1.78 REV_IN_GA(.(X, Xs), Ys) -> REV_IN_GA(Xs, Zs) 3.94/1.78 3.94/1.78 R is empty. 3.94/1.78 The argument filtering Pi contains the following mapping: 3.94/1.78 .(x1, x2) = .(x1, x2) 3.94/1.78 3.94/1.78 REV_IN_GA(x1, x2) = REV_IN_GA(x1) 3.94/1.78 3.94/1.78 3.94/1.78 We have to consider all (P,R,Pi)-chains 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (17) PiDPToQDPProof (SOUND) 3.94/1.78 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (18) 3.94/1.78 Obligation: 3.94/1.78 Q DP problem: 3.94/1.78 The TRS P consists of the following rules: 3.94/1.78 3.94/1.78 REV_IN_GA(.(X, Xs)) -> REV_IN_GA(Xs) 3.94/1.78 3.94/1.78 R is empty. 3.94/1.78 Q is empty. 3.94/1.78 We have to consider all (P,Q,R)-chains. 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (19) QDPSizeChangeProof (EQUIVALENT) 3.94/1.78 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.94/1.78 3.94/1.78 From the DPs we obtained the following set of size-change graphs: 3.94/1.78 *REV_IN_GA(.(X, Xs)) -> REV_IN_GA(Xs) 3.94/1.78 The graph contains the following edges 1 > 1 3.94/1.78 3.94/1.78 3.94/1.78 ---------------------------------------- 3.94/1.78 3.94/1.78 (20) 3.94/1.78 YES 3.99/1.81 EOF