6.69/2.52 YES 6.69/2.54 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 6.69/2.54 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 6.69/2.54 6.69/2.54 6.69/2.54 Left Termination of the query pattern 6.69/2.54 6.69/2.54 factor(g,a) 6.69/2.54 6.69/2.54 w.r.t. the given Prolog program could successfully be proven: 6.69/2.54 6.69/2.54 (0) Prolog 6.69/2.54 (1) PrologToPiTRSProof [SOUND, 0 ms] 6.69/2.54 (2) PiTRS 6.69/2.54 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 6.69/2.54 (4) PiDP 6.69/2.54 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 6.69/2.54 (6) AND 6.69/2.54 (7) PiDP 6.69/2.54 (8) UsableRulesProof [EQUIVALENT, 0 ms] 6.69/2.54 (9) PiDP 6.69/2.54 (10) PiDPToQDPProof [SOUND, 0 ms] 6.69/2.54 (11) QDP 6.69/2.54 (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] 6.69/2.54 (13) YES 6.69/2.54 (14) PiDP 6.69/2.54 (15) UsableRulesProof [EQUIVALENT, 0 ms] 6.69/2.54 (16) PiDP 6.69/2.54 (17) PiDPToQDPProof [SOUND, 0 ms] 6.69/2.54 (18) QDP 6.69/2.54 (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] 6.69/2.54 (20) YES 6.69/2.54 (21) PiDP 6.69/2.54 (22) UsableRulesProof [EQUIVALENT, 0 ms] 6.69/2.54 (23) PiDP 6.69/2.54 (24) PiDPToQDPProof [SOUND, 0 ms] 6.69/2.54 (25) QDP 6.69/2.54 (26) QDPOrderProof [EQUIVALENT, 36 ms] 6.69/2.54 (27) QDP 6.69/2.54 (28) DependencyGraphProof [EQUIVALENT, 0 ms] 6.69/2.54 (29) TRUE 6.69/2.54 6.69/2.54 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (0) 6.69/2.54 Obligation: 6.69/2.54 Clauses: 6.69/2.54 6.69/2.54 factor(.(X, []), X). 6.69/2.54 factor(.(X, .(Y, Xs)), T) :- ','(times(X, Y, Z), factor(.(Z, Xs), T)). 6.69/2.54 times(0, X_, 0). 6.69/2.54 times(s(X), Y, Z) :- ','(times(X, Y, XY), plus(XY, Y, Z)). 6.69/2.54 plus(0, X, X). 6.69/2.54 plus(s(X), Y, s(Z)) :- plus(X, Y, Z). 6.69/2.54 6.69/2.54 6.69/2.54 Query: factor(g,a) 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (1) PrologToPiTRSProof (SOUND) 6.69/2.54 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 6.69/2.54 6.69/2.54 factor_in_2: (b,f) 6.69/2.54 6.69/2.54 times_in_3: (b,b,f) 6.69/2.54 6.69/2.54 plus_in_3: (b,b,f) 6.69/2.54 6.69/2.54 Transforming Prolog into the following Term Rewriting System: 6.69/2.54 6.69/2.54 Pi-finite rewrite system: 6.69/2.54 The TRS R consists of the following rules: 6.69/2.54 6.69/2.54 factor_in_ga(.(X, []), X) -> factor_out_ga(.(X, []), X) 6.69/2.54 factor_in_ga(.(X, .(Y, Xs)), T) -> U1_ga(X, Y, Xs, T, times_in_gga(X, Y, Z)) 6.69/2.54 times_in_gga(0, X_, 0) -> times_out_gga(0, X_, 0) 6.69/2.54 times_in_gga(s(X), Y, Z) -> U3_gga(X, Y, Z, times_in_gga(X, Y, XY)) 6.69/2.54 U3_gga(X, Y, Z, times_out_gga(X, Y, XY)) -> U4_gga(X, Y, Z, plus_in_gga(XY, Y, Z)) 6.69/2.54 plus_in_gga(0, X, X) -> plus_out_gga(0, X, X) 6.69/2.54 plus_in_gga(s(X), Y, s(Z)) -> U5_gga(X, Y, Z, plus_in_gga(X, Y, Z)) 6.69/2.54 U5_gga(X, Y, Z, plus_out_gga(X, Y, Z)) -> plus_out_gga(s(X), Y, s(Z)) 6.69/2.54 U4_gga(X, Y, Z, plus_out_gga(XY, Y, Z)) -> times_out_gga(s(X), Y, Z) 6.69/2.54 U1_ga(X, Y, Xs, T, times_out_gga(X, Y, Z)) -> U2_ga(X, Y, Xs, T, factor_in_ga(.(Z, Xs), T)) 6.69/2.54 U2_ga(X, Y, Xs, T, factor_out_ga(.(Z, Xs), T)) -> factor_out_ga(.(X, .(Y, Xs)), T) 6.69/2.54 6.69/2.54 The argument filtering Pi contains the following mapping: 6.69/2.54 factor_in_ga(x1, x2) = factor_in_ga(x1) 6.69/2.54 6.69/2.54 .(x1, x2) = .(x1, x2) 6.69/2.54 6.69/2.54 [] = [] 6.69/2.54 6.69/2.54 factor_out_ga(x1, x2) = factor_out_ga(x2) 6.69/2.54 6.69/2.54 U1_ga(x1, x2, x3, x4, x5) = U1_ga(x3, x5) 6.69/2.54 6.69/2.54 times_in_gga(x1, x2, x3) = times_in_gga(x1, x2) 6.69/2.54 6.69/2.54 0 = 0 6.69/2.54 6.69/2.54 times_out_gga(x1, x2, x3) = times_out_gga(x3) 6.69/2.54 6.69/2.54 s(x1) = s(x1) 6.69/2.54 6.69/2.54 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.69/2.54 6.69/2.54 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.69/2.54 6.69/2.54 plus_in_gga(x1, x2, x3) = plus_in_gga(x1, x2) 6.69/2.54 6.69/2.54 plus_out_gga(x1, x2, x3) = plus_out_gga(x3) 6.69/2.54 6.69/2.54 U5_gga(x1, x2, x3, x4) = U5_gga(x4) 6.69/2.54 6.69/2.54 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.69/2.54 6.69/2.54 6.69/2.54 6.69/2.54 6.69/2.54 6.69/2.54 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 6.69/2.54 6.69/2.54 6.69/2.54 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (2) 6.69/2.54 Obligation: 6.69/2.54 Pi-finite rewrite system: 6.69/2.54 The TRS R consists of the following rules: 6.69/2.54 6.69/2.54 factor_in_ga(.(X, []), X) -> factor_out_ga(.(X, []), X) 6.69/2.54 factor_in_ga(.(X, .(Y, Xs)), T) -> U1_ga(X, Y, Xs, T, times_in_gga(X, Y, Z)) 6.69/2.54 times_in_gga(0, X_, 0) -> times_out_gga(0, X_, 0) 6.69/2.54 times_in_gga(s(X), Y, Z) -> U3_gga(X, Y, Z, times_in_gga(X, Y, XY)) 6.69/2.54 U3_gga(X, Y, Z, times_out_gga(X, Y, XY)) -> U4_gga(X, Y, Z, plus_in_gga(XY, Y, Z)) 6.69/2.54 plus_in_gga(0, X, X) -> plus_out_gga(0, X, X) 6.69/2.54 plus_in_gga(s(X), Y, s(Z)) -> U5_gga(X, Y, Z, plus_in_gga(X, Y, Z)) 6.69/2.54 U5_gga(X, Y, Z, plus_out_gga(X, Y, Z)) -> plus_out_gga(s(X), Y, s(Z)) 6.69/2.54 U4_gga(X, Y, Z, plus_out_gga(XY, Y, Z)) -> times_out_gga(s(X), Y, Z) 6.69/2.54 U1_ga(X, Y, Xs, T, times_out_gga(X, Y, Z)) -> U2_ga(X, Y, Xs, T, factor_in_ga(.(Z, Xs), T)) 6.69/2.54 U2_ga(X, Y, Xs, T, factor_out_ga(.(Z, Xs), T)) -> factor_out_ga(.(X, .(Y, Xs)), T) 6.69/2.54 6.69/2.54 The argument filtering Pi contains the following mapping: 6.69/2.54 factor_in_ga(x1, x2) = factor_in_ga(x1) 6.69/2.54 6.69/2.54 .(x1, x2) = .(x1, x2) 6.69/2.54 6.69/2.54 [] = [] 6.69/2.54 6.69/2.54 factor_out_ga(x1, x2) = factor_out_ga(x2) 6.69/2.54 6.69/2.54 U1_ga(x1, x2, x3, x4, x5) = U1_ga(x3, x5) 6.69/2.54 6.69/2.54 times_in_gga(x1, x2, x3) = times_in_gga(x1, x2) 6.69/2.54 6.69/2.54 0 = 0 6.69/2.54 6.69/2.54 times_out_gga(x1, x2, x3) = times_out_gga(x3) 6.69/2.54 6.69/2.54 s(x1) = s(x1) 6.69/2.54 6.69/2.54 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.69/2.54 6.69/2.54 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.69/2.54 6.69/2.54 plus_in_gga(x1, x2, x3) = plus_in_gga(x1, x2) 6.69/2.54 6.69/2.54 plus_out_gga(x1, x2, x3) = plus_out_gga(x3) 6.69/2.54 6.69/2.54 U5_gga(x1, x2, x3, x4) = U5_gga(x4) 6.69/2.54 6.69/2.54 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.69/2.54 6.69/2.54 6.69/2.54 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (3) DependencyPairsProof (EQUIVALENT) 6.69/2.54 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 6.69/2.54 Pi DP problem: 6.69/2.54 The TRS P consists of the following rules: 6.69/2.54 6.69/2.54 FACTOR_IN_GA(.(X, .(Y, Xs)), T) -> U1_GA(X, Y, Xs, T, times_in_gga(X, Y, Z)) 6.69/2.54 FACTOR_IN_GA(.(X, .(Y, Xs)), T) -> TIMES_IN_GGA(X, Y, Z) 6.69/2.54 TIMES_IN_GGA(s(X), Y, Z) -> U3_GGA(X, Y, Z, times_in_gga(X, Y, XY)) 6.69/2.54 TIMES_IN_GGA(s(X), Y, Z) -> TIMES_IN_GGA(X, Y, XY) 6.69/2.54 U3_GGA(X, Y, Z, times_out_gga(X, Y, XY)) -> U4_GGA(X, Y, Z, plus_in_gga(XY, Y, Z)) 6.69/2.54 U3_GGA(X, Y, Z, times_out_gga(X, Y, XY)) -> PLUS_IN_GGA(XY, Y, Z) 6.69/2.54 PLUS_IN_GGA(s(X), Y, s(Z)) -> U5_GGA(X, Y, Z, plus_in_gga(X, Y, Z)) 6.69/2.54 PLUS_IN_GGA(s(X), Y, s(Z)) -> PLUS_IN_GGA(X, Y, Z) 6.69/2.54 U1_GA(X, Y, Xs, T, times_out_gga(X, Y, Z)) -> U2_GA(X, Y, Xs, T, factor_in_ga(.(Z, Xs), T)) 6.69/2.54 U1_GA(X, Y, Xs, T, times_out_gga(X, Y, Z)) -> FACTOR_IN_GA(.(Z, Xs), T) 6.69/2.54 6.69/2.54 The TRS R consists of the following rules: 6.69/2.54 6.69/2.54 factor_in_ga(.(X, []), X) -> factor_out_ga(.(X, []), X) 6.69/2.54 factor_in_ga(.(X, .(Y, Xs)), T) -> U1_ga(X, Y, Xs, T, times_in_gga(X, Y, Z)) 6.69/2.54 times_in_gga(0, X_, 0) -> times_out_gga(0, X_, 0) 6.69/2.54 times_in_gga(s(X), Y, Z) -> U3_gga(X, Y, Z, times_in_gga(X, Y, XY)) 6.69/2.54 U3_gga(X, Y, Z, times_out_gga(X, Y, XY)) -> U4_gga(X, Y, Z, plus_in_gga(XY, Y, Z)) 6.69/2.54 plus_in_gga(0, X, X) -> plus_out_gga(0, X, X) 6.69/2.54 plus_in_gga(s(X), Y, s(Z)) -> U5_gga(X, Y, Z, plus_in_gga(X, Y, Z)) 6.69/2.54 U5_gga(X, Y, Z, plus_out_gga(X, Y, Z)) -> plus_out_gga(s(X), Y, s(Z)) 6.69/2.54 U4_gga(X, Y, Z, plus_out_gga(XY, Y, Z)) -> times_out_gga(s(X), Y, Z) 6.69/2.54 U1_ga(X, Y, Xs, T, times_out_gga(X, Y, Z)) -> U2_ga(X, Y, Xs, T, factor_in_ga(.(Z, Xs), T)) 6.69/2.54 U2_ga(X, Y, Xs, T, factor_out_ga(.(Z, Xs), T)) -> factor_out_ga(.(X, .(Y, Xs)), T) 6.69/2.54 6.69/2.54 The argument filtering Pi contains the following mapping: 6.69/2.54 factor_in_ga(x1, x2) = factor_in_ga(x1) 6.69/2.54 6.69/2.54 .(x1, x2) = .(x1, x2) 6.69/2.54 6.69/2.54 [] = [] 6.69/2.54 6.69/2.54 factor_out_ga(x1, x2) = factor_out_ga(x2) 6.69/2.54 6.69/2.54 U1_ga(x1, x2, x3, x4, x5) = U1_ga(x3, x5) 6.69/2.54 6.69/2.54 times_in_gga(x1, x2, x3) = times_in_gga(x1, x2) 6.69/2.54 6.69/2.54 0 = 0 6.69/2.54 6.69/2.54 times_out_gga(x1, x2, x3) = times_out_gga(x3) 6.69/2.54 6.69/2.54 s(x1) = s(x1) 6.69/2.54 6.69/2.54 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.69/2.54 6.69/2.54 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.69/2.54 6.69/2.54 plus_in_gga(x1, x2, x3) = plus_in_gga(x1, x2) 6.69/2.54 6.69/2.54 plus_out_gga(x1, x2, x3) = plus_out_gga(x3) 6.69/2.54 6.69/2.54 U5_gga(x1, x2, x3, x4) = U5_gga(x4) 6.69/2.54 6.69/2.54 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.69/2.54 6.69/2.54 FACTOR_IN_GA(x1, x2) = FACTOR_IN_GA(x1) 6.69/2.54 6.69/2.54 U1_GA(x1, x2, x3, x4, x5) = U1_GA(x3, x5) 6.69/2.54 6.69/2.54 TIMES_IN_GGA(x1, x2, x3) = TIMES_IN_GGA(x1, x2) 6.69/2.54 6.69/2.54 U3_GGA(x1, x2, x3, x4) = U3_GGA(x2, x4) 6.69/2.54 6.69/2.54 U4_GGA(x1, x2, x3, x4) = U4_GGA(x4) 6.69/2.54 6.69/2.54 PLUS_IN_GGA(x1, x2, x3) = PLUS_IN_GGA(x1, x2) 6.69/2.54 6.69/2.54 U5_GGA(x1, x2, x3, x4) = U5_GGA(x4) 6.69/2.54 6.69/2.54 U2_GA(x1, x2, x3, x4, x5) = U2_GA(x5) 6.69/2.54 6.69/2.54 6.69/2.54 We have to consider all (P,R,Pi)-chains 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (4) 6.69/2.54 Obligation: 6.69/2.54 Pi DP problem: 6.69/2.54 The TRS P consists of the following rules: 6.69/2.54 6.69/2.54 FACTOR_IN_GA(.(X, .(Y, Xs)), T) -> U1_GA(X, Y, Xs, T, times_in_gga(X, Y, Z)) 6.69/2.54 FACTOR_IN_GA(.(X, .(Y, Xs)), T) -> TIMES_IN_GGA(X, Y, Z) 6.69/2.54 TIMES_IN_GGA(s(X), Y, Z) -> U3_GGA(X, Y, Z, times_in_gga(X, Y, XY)) 6.69/2.54 TIMES_IN_GGA(s(X), Y, Z) -> TIMES_IN_GGA(X, Y, XY) 6.69/2.54 U3_GGA(X, Y, Z, times_out_gga(X, Y, XY)) -> U4_GGA(X, Y, Z, plus_in_gga(XY, Y, Z)) 6.69/2.54 U3_GGA(X, Y, Z, times_out_gga(X, Y, XY)) -> PLUS_IN_GGA(XY, Y, Z) 6.69/2.54 PLUS_IN_GGA(s(X), Y, s(Z)) -> U5_GGA(X, Y, Z, plus_in_gga(X, Y, Z)) 6.69/2.54 PLUS_IN_GGA(s(X), Y, s(Z)) -> PLUS_IN_GGA(X, Y, Z) 6.69/2.54 U1_GA(X, Y, Xs, T, times_out_gga(X, Y, Z)) -> U2_GA(X, Y, Xs, T, factor_in_ga(.(Z, Xs), T)) 6.69/2.54 U1_GA(X, Y, Xs, T, times_out_gga(X, Y, Z)) -> FACTOR_IN_GA(.(Z, Xs), T) 6.69/2.54 6.69/2.54 The TRS R consists of the following rules: 6.69/2.54 6.69/2.54 factor_in_ga(.(X, []), X) -> factor_out_ga(.(X, []), X) 6.69/2.54 factor_in_ga(.(X, .(Y, Xs)), T) -> U1_ga(X, Y, Xs, T, times_in_gga(X, Y, Z)) 6.69/2.54 times_in_gga(0, X_, 0) -> times_out_gga(0, X_, 0) 6.69/2.54 times_in_gga(s(X), Y, Z) -> U3_gga(X, Y, Z, times_in_gga(X, Y, XY)) 6.69/2.54 U3_gga(X, Y, Z, times_out_gga(X, Y, XY)) -> U4_gga(X, Y, Z, plus_in_gga(XY, Y, Z)) 6.69/2.54 plus_in_gga(0, X, X) -> plus_out_gga(0, X, X) 6.69/2.54 plus_in_gga(s(X), Y, s(Z)) -> U5_gga(X, Y, Z, plus_in_gga(X, Y, Z)) 6.69/2.54 U5_gga(X, Y, Z, plus_out_gga(X, Y, Z)) -> plus_out_gga(s(X), Y, s(Z)) 6.69/2.54 U4_gga(X, Y, Z, plus_out_gga(XY, Y, Z)) -> times_out_gga(s(X), Y, Z) 6.69/2.54 U1_ga(X, Y, Xs, T, times_out_gga(X, Y, Z)) -> U2_ga(X, Y, Xs, T, factor_in_ga(.(Z, Xs), T)) 6.69/2.54 U2_ga(X, Y, Xs, T, factor_out_ga(.(Z, Xs), T)) -> factor_out_ga(.(X, .(Y, Xs)), T) 6.69/2.54 6.69/2.54 The argument filtering Pi contains the following mapping: 6.69/2.54 factor_in_ga(x1, x2) = factor_in_ga(x1) 6.69/2.54 6.69/2.54 .(x1, x2) = .(x1, x2) 6.69/2.54 6.69/2.54 [] = [] 6.69/2.54 6.69/2.54 factor_out_ga(x1, x2) = factor_out_ga(x2) 6.69/2.54 6.69/2.54 U1_ga(x1, x2, x3, x4, x5) = U1_ga(x3, x5) 6.69/2.54 6.69/2.54 times_in_gga(x1, x2, x3) = times_in_gga(x1, x2) 6.69/2.54 6.69/2.54 0 = 0 6.69/2.54 6.69/2.54 times_out_gga(x1, x2, x3) = times_out_gga(x3) 6.69/2.54 6.69/2.54 s(x1) = s(x1) 6.69/2.54 6.69/2.54 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.69/2.54 6.69/2.54 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.69/2.54 6.69/2.54 plus_in_gga(x1, x2, x3) = plus_in_gga(x1, x2) 6.69/2.54 6.69/2.54 plus_out_gga(x1, x2, x3) = plus_out_gga(x3) 6.69/2.54 6.69/2.54 U5_gga(x1, x2, x3, x4) = U5_gga(x4) 6.69/2.54 6.69/2.54 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.69/2.54 6.69/2.54 FACTOR_IN_GA(x1, x2) = FACTOR_IN_GA(x1) 6.69/2.54 6.69/2.54 U1_GA(x1, x2, x3, x4, x5) = U1_GA(x3, x5) 6.69/2.54 6.69/2.54 TIMES_IN_GGA(x1, x2, x3) = TIMES_IN_GGA(x1, x2) 6.69/2.54 6.69/2.54 U3_GGA(x1, x2, x3, x4) = U3_GGA(x2, x4) 6.69/2.54 6.69/2.54 U4_GGA(x1, x2, x3, x4) = U4_GGA(x4) 6.69/2.54 6.69/2.54 PLUS_IN_GGA(x1, x2, x3) = PLUS_IN_GGA(x1, x2) 6.69/2.54 6.69/2.54 U5_GGA(x1, x2, x3, x4) = U5_GGA(x4) 6.69/2.54 6.69/2.54 U2_GA(x1, x2, x3, x4, x5) = U2_GA(x5) 6.69/2.54 6.69/2.54 6.69/2.54 We have to consider all (P,R,Pi)-chains 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (5) DependencyGraphProof (EQUIVALENT) 6.69/2.54 The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 6 less nodes. 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (6) 6.69/2.54 Complex Obligation (AND) 6.69/2.54 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (7) 6.69/2.54 Obligation: 6.69/2.54 Pi DP problem: 6.69/2.54 The TRS P consists of the following rules: 6.69/2.54 6.69/2.54 PLUS_IN_GGA(s(X), Y, s(Z)) -> PLUS_IN_GGA(X, Y, Z) 6.69/2.54 6.69/2.54 The TRS R consists of the following rules: 6.69/2.54 6.69/2.54 factor_in_ga(.(X, []), X) -> factor_out_ga(.(X, []), X) 6.69/2.54 factor_in_ga(.(X, .(Y, Xs)), T) -> U1_ga(X, Y, Xs, T, times_in_gga(X, Y, Z)) 6.69/2.54 times_in_gga(0, X_, 0) -> times_out_gga(0, X_, 0) 6.69/2.54 times_in_gga(s(X), Y, Z) -> U3_gga(X, Y, Z, times_in_gga(X, Y, XY)) 6.69/2.54 U3_gga(X, Y, Z, times_out_gga(X, Y, XY)) -> U4_gga(X, Y, Z, plus_in_gga(XY, Y, Z)) 6.69/2.54 plus_in_gga(0, X, X) -> plus_out_gga(0, X, X) 6.69/2.54 plus_in_gga(s(X), Y, s(Z)) -> U5_gga(X, Y, Z, plus_in_gga(X, Y, Z)) 6.69/2.54 U5_gga(X, Y, Z, plus_out_gga(X, Y, Z)) -> plus_out_gga(s(X), Y, s(Z)) 6.69/2.54 U4_gga(X, Y, Z, plus_out_gga(XY, Y, Z)) -> times_out_gga(s(X), Y, Z) 6.69/2.54 U1_ga(X, Y, Xs, T, times_out_gga(X, Y, Z)) -> U2_ga(X, Y, Xs, T, factor_in_ga(.(Z, Xs), T)) 6.69/2.54 U2_ga(X, Y, Xs, T, factor_out_ga(.(Z, Xs), T)) -> factor_out_ga(.(X, .(Y, Xs)), T) 6.69/2.54 6.69/2.54 The argument filtering Pi contains the following mapping: 6.69/2.54 factor_in_ga(x1, x2) = factor_in_ga(x1) 6.69/2.54 6.69/2.54 .(x1, x2) = .(x1, x2) 6.69/2.54 6.69/2.54 [] = [] 6.69/2.54 6.69/2.54 factor_out_ga(x1, x2) = factor_out_ga(x2) 6.69/2.54 6.69/2.54 U1_ga(x1, x2, x3, x4, x5) = U1_ga(x3, x5) 6.69/2.54 6.69/2.54 times_in_gga(x1, x2, x3) = times_in_gga(x1, x2) 6.69/2.54 6.69/2.54 0 = 0 6.69/2.54 6.69/2.54 times_out_gga(x1, x2, x3) = times_out_gga(x3) 6.69/2.54 6.69/2.54 s(x1) = s(x1) 6.69/2.54 6.69/2.54 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.69/2.54 6.69/2.54 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.69/2.54 6.69/2.54 plus_in_gga(x1, x2, x3) = plus_in_gga(x1, x2) 6.69/2.54 6.69/2.54 plus_out_gga(x1, x2, x3) = plus_out_gga(x3) 6.69/2.54 6.69/2.54 U5_gga(x1, x2, x3, x4) = U5_gga(x4) 6.69/2.54 6.69/2.54 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.69/2.54 6.69/2.54 PLUS_IN_GGA(x1, x2, x3) = PLUS_IN_GGA(x1, x2) 6.69/2.54 6.69/2.54 6.69/2.54 We have to consider all (P,R,Pi)-chains 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (8) UsableRulesProof (EQUIVALENT) 6.69/2.54 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (9) 6.69/2.54 Obligation: 6.69/2.54 Pi DP problem: 6.69/2.54 The TRS P consists of the following rules: 6.69/2.54 6.69/2.54 PLUS_IN_GGA(s(X), Y, s(Z)) -> PLUS_IN_GGA(X, Y, Z) 6.69/2.54 6.69/2.54 R is empty. 6.69/2.54 The argument filtering Pi contains the following mapping: 6.69/2.54 s(x1) = s(x1) 6.69/2.54 6.69/2.54 PLUS_IN_GGA(x1, x2, x3) = PLUS_IN_GGA(x1, x2) 6.69/2.54 6.69/2.54 6.69/2.54 We have to consider all (P,R,Pi)-chains 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (10) PiDPToQDPProof (SOUND) 6.69/2.54 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (11) 6.69/2.54 Obligation: 6.69/2.54 Q DP problem: 6.69/2.54 The TRS P consists of the following rules: 6.69/2.54 6.69/2.54 PLUS_IN_GGA(s(X), Y) -> PLUS_IN_GGA(X, Y) 6.69/2.54 6.69/2.54 R is empty. 6.69/2.54 Q is empty. 6.69/2.54 We have to consider all (P,Q,R)-chains. 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (12) QDPSizeChangeProof (EQUIVALENT) 6.69/2.54 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 6.69/2.54 6.69/2.54 From the DPs we obtained the following set of size-change graphs: 6.69/2.54 *PLUS_IN_GGA(s(X), Y) -> PLUS_IN_GGA(X, Y) 6.69/2.54 The graph contains the following edges 1 > 1, 2 >= 2 6.69/2.54 6.69/2.54 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (13) 6.69/2.54 YES 6.69/2.54 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (14) 6.69/2.54 Obligation: 6.69/2.54 Pi DP problem: 6.69/2.54 The TRS P consists of the following rules: 6.69/2.54 6.69/2.54 TIMES_IN_GGA(s(X), Y, Z) -> TIMES_IN_GGA(X, Y, XY) 6.69/2.54 6.69/2.54 The TRS R consists of the following rules: 6.69/2.54 6.69/2.54 factor_in_ga(.(X, []), X) -> factor_out_ga(.(X, []), X) 6.69/2.54 factor_in_ga(.(X, .(Y, Xs)), T) -> U1_ga(X, Y, Xs, T, times_in_gga(X, Y, Z)) 6.69/2.54 times_in_gga(0, X_, 0) -> times_out_gga(0, X_, 0) 6.69/2.54 times_in_gga(s(X), Y, Z) -> U3_gga(X, Y, Z, times_in_gga(X, Y, XY)) 6.69/2.54 U3_gga(X, Y, Z, times_out_gga(X, Y, XY)) -> U4_gga(X, Y, Z, plus_in_gga(XY, Y, Z)) 6.69/2.54 plus_in_gga(0, X, X) -> plus_out_gga(0, X, X) 6.69/2.54 plus_in_gga(s(X), Y, s(Z)) -> U5_gga(X, Y, Z, plus_in_gga(X, Y, Z)) 6.69/2.54 U5_gga(X, Y, Z, plus_out_gga(X, Y, Z)) -> plus_out_gga(s(X), Y, s(Z)) 6.69/2.54 U4_gga(X, Y, Z, plus_out_gga(XY, Y, Z)) -> times_out_gga(s(X), Y, Z) 6.69/2.54 U1_ga(X, Y, Xs, T, times_out_gga(X, Y, Z)) -> U2_ga(X, Y, Xs, T, factor_in_ga(.(Z, Xs), T)) 6.69/2.54 U2_ga(X, Y, Xs, T, factor_out_ga(.(Z, Xs), T)) -> factor_out_ga(.(X, .(Y, Xs)), T) 6.69/2.54 6.69/2.54 The argument filtering Pi contains the following mapping: 6.69/2.54 factor_in_ga(x1, x2) = factor_in_ga(x1) 6.69/2.54 6.69/2.54 .(x1, x2) = .(x1, x2) 6.69/2.54 6.69/2.54 [] = [] 6.69/2.54 6.69/2.54 factor_out_ga(x1, x2) = factor_out_ga(x2) 6.69/2.54 6.69/2.54 U1_ga(x1, x2, x3, x4, x5) = U1_ga(x3, x5) 6.69/2.54 6.69/2.54 times_in_gga(x1, x2, x3) = times_in_gga(x1, x2) 6.69/2.54 6.69/2.54 0 = 0 6.69/2.54 6.69/2.54 times_out_gga(x1, x2, x3) = times_out_gga(x3) 6.69/2.54 6.69/2.54 s(x1) = s(x1) 6.69/2.54 6.69/2.54 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.69/2.54 6.69/2.54 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.69/2.54 6.69/2.54 plus_in_gga(x1, x2, x3) = plus_in_gga(x1, x2) 6.69/2.54 6.69/2.54 plus_out_gga(x1, x2, x3) = plus_out_gga(x3) 6.69/2.54 6.69/2.54 U5_gga(x1, x2, x3, x4) = U5_gga(x4) 6.69/2.54 6.69/2.54 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.69/2.54 6.69/2.54 TIMES_IN_GGA(x1, x2, x3) = TIMES_IN_GGA(x1, x2) 6.69/2.54 6.69/2.54 6.69/2.54 We have to consider all (P,R,Pi)-chains 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (15) UsableRulesProof (EQUIVALENT) 6.69/2.54 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (16) 6.69/2.54 Obligation: 6.69/2.54 Pi DP problem: 6.69/2.54 The TRS P consists of the following rules: 6.69/2.54 6.69/2.54 TIMES_IN_GGA(s(X), Y, Z) -> TIMES_IN_GGA(X, Y, XY) 6.69/2.54 6.69/2.54 R is empty. 6.69/2.54 The argument filtering Pi contains the following mapping: 6.69/2.54 s(x1) = s(x1) 6.69/2.54 6.69/2.54 TIMES_IN_GGA(x1, x2, x3) = TIMES_IN_GGA(x1, x2) 6.69/2.54 6.69/2.54 6.69/2.54 We have to consider all (P,R,Pi)-chains 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (17) PiDPToQDPProof (SOUND) 6.69/2.54 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (18) 6.69/2.54 Obligation: 6.69/2.54 Q DP problem: 6.69/2.54 The TRS P consists of the following rules: 6.69/2.54 6.69/2.54 TIMES_IN_GGA(s(X), Y) -> TIMES_IN_GGA(X, Y) 6.69/2.54 6.69/2.54 R is empty. 6.69/2.54 Q is empty. 6.69/2.54 We have to consider all (P,Q,R)-chains. 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (19) QDPSizeChangeProof (EQUIVALENT) 6.69/2.54 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 6.69/2.54 6.69/2.54 From the DPs we obtained the following set of size-change graphs: 6.69/2.54 *TIMES_IN_GGA(s(X), Y) -> TIMES_IN_GGA(X, Y) 6.69/2.54 The graph contains the following edges 1 > 1, 2 >= 2 6.69/2.54 6.69/2.54 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (20) 6.69/2.54 YES 6.69/2.54 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (21) 6.69/2.54 Obligation: 6.69/2.54 Pi DP problem: 6.69/2.54 The TRS P consists of the following rules: 6.69/2.54 6.69/2.54 U1_GA(X, Y, Xs, T, times_out_gga(X, Y, Z)) -> FACTOR_IN_GA(.(Z, Xs), T) 6.69/2.54 FACTOR_IN_GA(.(X, .(Y, Xs)), T) -> U1_GA(X, Y, Xs, T, times_in_gga(X, Y, Z)) 6.69/2.54 6.69/2.54 The TRS R consists of the following rules: 6.69/2.54 6.69/2.54 factor_in_ga(.(X, []), X) -> factor_out_ga(.(X, []), X) 6.69/2.54 factor_in_ga(.(X, .(Y, Xs)), T) -> U1_ga(X, Y, Xs, T, times_in_gga(X, Y, Z)) 6.69/2.54 times_in_gga(0, X_, 0) -> times_out_gga(0, X_, 0) 6.69/2.54 times_in_gga(s(X), Y, Z) -> U3_gga(X, Y, Z, times_in_gga(X, Y, XY)) 6.69/2.54 U3_gga(X, Y, Z, times_out_gga(X, Y, XY)) -> U4_gga(X, Y, Z, plus_in_gga(XY, Y, Z)) 6.69/2.54 plus_in_gga(0, X, X) -> plus_out_gga(0, X, X) 6.69/2.54 plus_in_gga(s(X), Y, s(Z)) -> U5_gga(X, Y, Z, plus_in_gga(X, Y, Z)) 6.69/2.54 U5_gga(X, Y, Z, plus_out_gga(X, Y, Z)) -> plus_out_gga(s(X), Y, s(Z)) 6.69/2.54 U4_gga(X, Y, Z, plus_out_gga(XY, Y, Z)) -> times_out_gga(s(X), Y, Z) 6.69/2.54 U1_ga(X, Y, Xs, T, times_out_gga(X, Y, Z)) -> U2_ga(X, Y, Xs, T, factor_in_ga(.(Z, Xs), T)) 6.69/2.54 U2_ga(X, Y, Xs, T, factor_out_ga(.(Z, Xs), T)) -> factor_out_ga(.(X, .(Y, Xs)), T) 6.69/2.54 6.69/2.54 The argument filtering Pi contains the following mapping: 6.69/2.54 factor_in_ga(x1, x2) = factor_in_ga(x1) 6.69/2.54 6.69/2.54 .(x1, x2) = .(x1, x2) 6.69/2.54 6.69/2.54 [] = [] 6.69/2.54 6.69/2.54 factor_out_ga(x1, x2) = factor_out_ga(x2) 6.69/2.54 6.69/2.54 U1_ga(x1, x2, x3, x4, x5) = U1_ga(x3, x5) 6.69/2.54 6.69/2.54 times_in_gga(x1, x2, x3) = times_in_gga(x1, x2) 6.69/2.54 6.69/2.54 0 = 0 6.69/2.54 6.69/2.54 times_out_gga(x1, x2, x3) = times_out_gga(x3) 6.69/2.54 6.69/2.54 s(x1) = s(x1) 6.69/2.54 6.69/2.54 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.69/2.54 6.69/2.54 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.69/2.54 6.69/2.54 plus_in_gga(x1, x2, x3) = plus_in_gga(x1, x2) 6.69/2.54 6.69/2.54 plus_out_gga(x1, x2, x3) = plus_out_gga(x3) 6.69/2.54 6.69/2.54 U5_gga(x1, x2, x3, x4) = U5_gga(x4) 6.69/2.54 6.69/2.54 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 6.69/2.54 6.69/2.54 FACTOR_IN_GA(x1, x2) = FACTOR_IN_GA(x1) 6.69/2.54 6.69/2.54 U1_GA(x1, x2, x3, x4, x5) = U1_GA(x3, x5) 6.69/2.54 6.69/2.54 6.69/2.54 We have to consider all (P,R,Pi)-chains 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (22) UsableRulesProof (EQUIVALENT) 6.69/2.54 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (23) 6.69/2.54 Obligation: 6.69/2.54 Pi DP problem: 6.69/2.54 The TRS P consists of the following rules: 6.69/2.54 6.69/2.54 U1_GA(X, Y, Xs, T, times_out_gga(X, Y, Z)) -> FACTOR_IN_GA(.(Z, Xs), T) 6.69/2.54 FACTOR_IN_GA(.(X, .(Y, Xs)), T) -> U1_GA(X, Y, Xs, T, times_in_gga(X, Y, Z)) 6.69/2.54 6.69/2.54 The TRS R consists of the following rules: 6.69/2.54 6.69/2.54 times_in_gga(0, X_, 0) -> times_out_gga(0, X_, 0) 6.69/2.54 times_in_gga(s(X), Y, Z) -> U3_gga(X, Y, Z, times_in_gga(X, Y, XY)) 6.69/2.54 U3_gga(X, Y, Z, times_out_gga(X, Y, XY)) -> U4_gga(X, Y, Z, plus_in_gga(XY, Y, Z)) 6.69/2.54 U4_gga(X, Y, Z, plus_out_gga(XY, Y, Z)) -> times_out_gga(s(X), Y, Z) 6.69/2.54 plus_in_gga(0, X, X) -> plus_out_gga(0, X, X) 6.69/2.54 plus_in_gga(s(X), Y, s(Z)) -> U5_gga(X, Y, Z, plus_in_gga(X, Y, Z)) 6.69/2.54 U5_gga(X, Y, Z, plus_out_gga(X, Y, Z)) -> plus_out_gga(s(X), Y, s(Z)) 6.69/2.54 6.69/2.54 The argument filtering Pi contains the following mapping: 6.69/2.54 .(x1, x2) = .(x1, x2) 6.69/2.54 6.69/2.54 times_in_gga(x1, x2, x3) = times_in_gga(x1, x2) 6.69/2.54 6.69/2.54 0 = 0 6.69/2.54 6.69/2.54 times_out_gga(x1, x2, x3) = times_out_gga(x3) 6.69/2.54 6.69/2.54 s(x1) = s(x1) 6.69/2.54 6.69/2.54 U3_gga(x1, x2, x3, x4) = U3_gga(x2, x4) 6.69/2.54 6.69/2.54 U4_gga(x1, x2, x3, x4) = U4_gga(x4) 6.69/2.54 6.69/2.54 plus_in_gga(x1, x2, x3) = plus_in_gga(x1, x2) 6.69/2.54 6.69/2.54 plus_out_gga(x1, x2, x3) = plus_out_gga(x3) 6.69/2.54 6.69/2.54 U5_gga(x1, x2, x3, x4) = U5_gga(x4) 6.69/2.54 6.69/2.54 FACTOR_IN_GA(x1, x2) = FACTOR_IN_GA(x1) 6.69/2.54 6.69/2.54 U1_GA(x1, x2, x3, x4, x5) = U1_GA(x3, x5) 6.69/2.54 6.69/2.54 6.69/2.54 We have to consider all (P,R,Pi)-chains 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (24) PiDPToQDPProof (SOUND) 6.69/2.54 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (25) 6.69/2.54 Obligation: 6.69/2.54 Q DP problem: 6.69/2.54 The TRS P consists of the following rules: 6.69/2.54 6.69/2.54 U1_GA(Xs, times_out_gga(Z)) -> FACTOR_IN_GA(.(Z, Xs)) 6.69/2.54 FACTOR_IN_GA(.(X, .(Y, Xs))) -> U1_GA(Xs, times_in_gga(X, Y)) 6.69/2.54 6.69/2.54 The TRS R consists of the following rules: 6.69/2.54 6.69/2.54 times_in_gga(0, X_) -> times_out_gga(0) 6.69/2.54 times_in_gga(s(X), Y) -> U3_gga(Y, times_in_gga(X, Y)) 6.69/2.54 U3_gga(Y, times_out_gga(XY)) -> U4_gga(plus_in_gga(XY, Y)) 6.69/2.54 U4_gga(plus_out_gga(Z)) -> times_out_gga(Z) 6.69/2.54 plus_in_gga(0, X) -> plus_out_gga(X) 6.69/2.54 plus_in_gga(s(X), Y) -> U5_gga(plus_in_gga(X, Y)) 6.69/2.54 U5_gga(plus_out_gga(Z)) -> plus_out_gga(s(Z)) 6.69/2.54 6.69/2.54 The set Q consists of the following terms: 6.69/2.54 6.69/2.54 times_in_gga(x0, x1) 6.69/2.54 U3_gga(x0, x1) 6.69/2.54 U4_gga(x0) 6.69/2.54 plus_in_gga(x0, x1) 6.69/2.54 U5_gga(x0) 6.69/2.54 6.69/2.54 We have to consider all (P,Q,R)-chains. 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (26) QDPOrderProof (EQUIVALENT) 6.69/2.54 We use the reduction pair processor [LPAR04,JAR06]. 6.69/2.54 6.69/2.54 6.69/2.54 The following pairs can be oriented strictly and are deleted. 6.69/2.54 6.69/2.54 FACTOR_IN_GA(.(X, .(Y, Xs))) -> U1_GA(Xs, times_in_gga(X, Y)) 6.69/2.54 The remaining pairs can at least be oriented weakly. 6.69/2.54 Used ordering: Polynomial Order [NEGPOLO,POLO] with Interpretation: 6.69/2.54 6.69/2.54 POL( U1_GA_2(x_1, x_2) ) = 2x_1 6.69/2.54 POL( times_in_gga_2(x_1, x_2) ) = 0 6.69/2.54 POL( 0 ) = 2 6.69/2.54 POL( times_out_gga_1(x_1) ) = max{0, 2x_1 - 2} 6.69/2.54 POL( s_1(x_1) ) = 2x_1 6.69/2.54 POL( U3_gga_2(x_1, x_2) ) = max{0, x_1 - 2} 6.69/2.54 POL( U4_gga_1(x_1) ) = 2 6.69/2.54 POL( plus_in_gga_2(x_1, x_2) ) = 0 6.69/2.54 POL( plus_out_gga_1(x_1) ) = max{0, x_1 - 2} 6.69/2.54 POL( U5_gga_1(x_1) ) = max{0, -2} 6.69/2.54 POL( FACTOR_IN_GA_1(x_1) ) = max{0, 2x_1 - 2} 6.69/2.54 POL( ._2(x_1, x_2) ) = x_2 + 1 6.69/2.54 6.69/2.54 The following usable rules [FROCOS05] with respect to the argument filtering of the ordering [JAR06] were oriented: 6.69/2.54 none 6.69/2.54 6.69/2.54 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (27) 6.69/2.54 Obligation: 6.69/2.54 Q DP problem: 6.69/2.54 The TRS P consists of the following rules: 6.69/2.54 6.69/2.54 U1_GA(Xs, times_out_gga(Z)) -> FACTOR_IN_GA(.(Z, Xs)) 6.69/2.54 6.69/2.54 The TRS R consists of the following rules: 6.69/2.54 6.69/2.54 times_in_gga(0, X_) -> times_out_gga(0) 6.69/2.54 times_in_gga(s(X), Y) -> U3_gga(Y, times_in_gga(X, Y)) 6.69/2.54 U3_gga(Y, times_out_gga(XY)) -> U4_gga(plus_in_gga(XY, Y)) 6.69/2.54 U4_gga(plus_out_gga(Z)) -> times_out_gga(Z) 6.69/2.54 plus_in_gga(0, X) -> plus_out_gga(X) 6.69/2.54 plus_in_gga(s(X), Y) -> U5_gga(plus_in_gga(X, Y)) 6.69/2.54 U5_gga(plus_out_gga(Z)) -> plus_out_gga(s(Z)) 6.69/2.54 6.69/2.54 The set Q consists of the following terms: 6.69/2.54 6.69/2.54 times_in_gga(x0, x1) 6.69/2.54 U3_gga(x0, x1) 6.69/2.54 U4_gga(x0) 6.69/2.54 plus_in_gga(x0, x1) 6.69/2.54 U5_gga(x0) 6.69/2.54 6.69/2.54 We have to consider all (P,Q,R)-chains. 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (28) DependencyGraphProof (EQUIVALENT) 6.69/2.54 The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node. 6.69/2.54 ---------------------------------------- 6.69/2.54 6.69/2.54 (29) 6.69/2.54 TRUE 6.94/2.61 EOF