3.43/1.76 YES 3.43/1.77 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 3.43/1.77 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.43/1.77 3.43/1.77 3.43/1.77 Left Termination of the query pattern 3.43/1.77 3.43/1.77 suffix(a,g) 3.43/1.77 3.43/1.77 w.r.t. the given Prolog program could successfully be proven: 3.43/1.77 3.43/1.77 (0) Prolog 3.43/1.77 (1) PrologToPiTRSProof [SOUND, 0 ms] 3.43/1.77 (2) PiTRS 3.43/1.77 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 3.43/1.77 (4) PiDP 3.43/1.77 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 3.43/1.77 (6) PiDP 3.43/1.77 (7) UsableRulesProof [EQUIVALENT, 0 ms] 3.43/1.77 (8) PiDP 3.43/1.77 (9) PiDPToQDPProof [SOUND, 0 ms] 3.43/1.77 (10) QDP 3.43/1.77 (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.43/1.77 (12) YES 3.43/1.77 3.43/1.77 3.43/1.77 ---------------------------------------- 3.43/1.77 3.43/1.77 (0) 3.43/1.77 Obligation: 3.43/1.77 Clauses: 3.43/1.77 3.43/1.77 suffix(Xs, Ys) :- app(X1, Xs, Ys). 3.43/1.77 app([], X, X). 3.43/1.77 app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs). 3.43/1.77 3.43/1.77 3.43/1.77 Query: suffix(a,g) 3.43/1.77 ---------------------------------------- 3.43/1.77 3.43/1.77 (1) PrologToPiTRSProof (SOUND) 3.43/1.77 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 3.43/1.77 3.43/1.77 suffix_in_2: (f,b) 3.43/1.77 3.43/1.77 app_in_3: (f,f,b) 3.43/1.77 3.43/1.77 Transforming Prolog into the following Term Rewriting System: 3.43/1.78 3.43/1.78 Pi-finite rewrite system: 3.43/1.78 The TRS R consists of the following rules: 3.43/1.78 3.43/1.78 suffix_in_ag(Xs, Ys) -> U1_ag(Xs, Ys, app_in_aag(X1, Xs, Ys)) 3.43/1.78 app_in_aag([], X, X) -> app_out_aag([], X, X) 3.43/1.78 app_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs)) 3.43/1.78 U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) -> app_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.43/1.78 U1_ag(Xs, Ys, app_out_aag(X1, Xs, Ys)) -> suffix_out_ag(Xs, Ys) 3.43/1.78 3.43/1.78 The argument filtering Pi contains the following mapping: 3.43/1.78 suffix_in_ag(x1, x2) = suffix_in_ag(x2) 3.43/1.78 3.43/1.78 U1_ag(x1, x2, x3) = U1_ag(x3) 3.43/1.78 3.43/1.78 app_in_aag(x1, x2, x3) = app_in_aag(x3) 3.43/1.78 3.43/1.78 app_out_aag(x1, x2, x3) = app_out_aag(x1, x2) 3.43/1.78 3.43/1.78 .(x1, x2) = .(x1, x2) 3.43/1.78 3.43/1.78 U2_aag(x1, x2, x3, x4, x5) = U2_aag(x1, x5) 3.43/1.78 3.43/1.78 suffix_out_ag(x1, x2) = suffix_out_ag(x1) 3.43/1.78 3.43/1.78 3.43/1.78 3.43/1.78 3.43/1.78 3.43/1.78 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 3.43/1.78 3.43/1.78 3.43/1.78 3.43/1.78 ---------------------------------------- 3.43/1.78 3.43/1.78 (2) 3.43/1.78 Obligation: 3.43/1.78 Pi-finite rewrite system: 3.43/1.78 The TRS R consists of the following rules: 3.43/1.78 3.43/1.78 suffix_in_ag(Xs, Ys) -> U1_ag(Xs, Ys, app_in_aag(X1, Xs, Ys)) 3.43/1.78 app_in_aag([], X, X) -> app_out_aag([], X, X) 3.43/1.78 app_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs)) 3.43/1.78 U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) -> app_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.43/1.78 U1_ag(Xs, Ys, app_out_aag(X1, Xs, Ys)) -> suffix_out_ag(Xs, Ys) 3.43/1.78 3.43/1.78 The argument filtering Pi contains the following mapping: 3.43/1.78 suffix_in_ag(x1, x2) = suffix_in_ag(x2) 3.43/1.78 3.43/1.78 U1_ag(x1, x2, x3) = U1_ag(x3) 3.43/1.78 3.43/1.78 app_in_aag(x1, x2, x3) = app_in_aag(x3) 3.43/1.78 3.43/1.78 app_out_aag(x1, x2, x3) = app_out_aag(x1, x2) 3.43/1.78 3.43/1.78 .(x1, x2) = .(x1, x2) 3.43/1.78 3.43/1.78 U2_aag(x1, x2, x3, x4, x5) = U2_aag(x1, x5) 3.43/1.78 3.43/1.78 suffix_out_ag(x1, x2) = suffix_out_ag(x1) 3.43/1.78 3.43/1.78 3.43/1.78 3.43/1.78 ---------------------------------------- 3.43/1.78 3.43/1.78 (3) DependencyPairsProof (EQUIVALENT) 3.43/1.78 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 3.43/1.78 Pi DP problem: 3.43/1.78 The TRS P consists of the following rules: 3.43/1.78 3.43/1.78 SUFFIX_IN_AG(Xs, Ys) -> U1_AG(Xs, Ys, app_in_aag(X1, Xs, Ys)) 3.43/1.78 SUFFIX_IN_AG(Xs, Ys) -> APP_IN_AAG(X1, Xs, Ys) 3.43/1.78 APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> U2_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs)) 3.43/1.78 APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_AAG(Xs, Ys, Zs) 3.43/1.78 3.43/1.78 The TRS R consists of the following rules: 3.43/1.78 3.43/1.78 suffix_in_ag(Xs, Ys) -> U1_ag(Xs, Ys, app_in_aag(X1, Xs, Ys)) 3.43/1.78 app_in_aag([], X, X) -> app_out_aag([], X, X) 3.43/1.78 app_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs)) 3.43/1.78 U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) -> app_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.43/1.78 U1_ag(Xs, Ys, app_out_aag(X1, Xs, Ys)) -> suffix_out_ag(Xs, Ys) 3.43/1.78 3.43/1.78 The argument filtering Pi contains the following mapping: 3.43/1.78 suffix_in_ag(x1, x2) = suffix_in_ag(x2) 3.43/1.78 3.43/1.78 U1_ag(x1, x2, x3) = U1_ag(x3) 3.43/1.78 3.43/1.78 app_in_aag(x1, x2, x3) = app_in_aag(x3) 3.43/1.78 3.43/1.78 app_out_aag(x1, x2, x3) = app_out_aag(x1, x2) 3.43/1.78 3.43/1.78 .(x1, x2) = .(x1, x2) 3.43/1.78 3.43/1.78 U2_aag(x1, x2, x3, x4, x5) = U2_aag(x1, x5) 3.43/1.78 3.43/1.78 suffix_out_ag(x1, x2) = suffix_out_ag(x1) 3.43/1.78 3.43/1.78 SUFFIX_IN_AG(x1, x2) = SUFFIX_IN_AG(x2) 3.43/1.78 3.43/1.78 U1_AG(x1, x2, x3) = U1_AG(x3) 3.43/1.78 3.43/1.78 APP_IN_AAG(x1, x2, x3) = APP_IN_AAG(x3) 3.43/1.78 3.43/1.78 U2_AAG(x1, x2, x3, x4, x5) = U2_AAG(x1, x5) 3.43/1.78 3.43/1.78 3.43/1.78 We have to consider all (P,R,Pi)-chains 3.43/1.78 ---------------------------------------- 3.43/1.78 3.43/1.78 (4) 3.43/1.78 Obligation: 3.43/1.78 Pi DP problem: 3.43/1.78 The TRS P consists of the following rules: 3.43/1.78 3.43/1.78 SUFFIX_IN_AG(Xs, Ys) -> U1_AG(Xs, Ys, app_in_aag(X1, Xs, Ys)) 3.43/1.78 SUFFIX_IN_AG(Xs, Ys) -> APP_IN_AAG(X1, Xs, Ys) 3.43/1.78 APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> U2_AAG(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs)) 3.43/1.78 APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_AAG(Xs, Ys, Zs) 3.43/1.78 3.43/1.78 The TRS R consists of the following rules: 3.43/1.78 3.43/1.78 suffix_in_ag(Xs, Ys) -> U1_ag(Xs, Ys, app_in_aag(X1, Xs, Ys)) 3.43/1.78 app_in_aag([], X, X) -> app_out_aag([], X, X) 3.43/1.78 app_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs)) 3.43/1.78 U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) -> app_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.43/1.78 U1_ag(Xs, Ys, app_out_aag(X1, Xs, Ys)) -> suffix_out_ag(Xs, Ys) 3.43/1.78 3.43/1.78 The argument filtering Pi contains the following mapping: 3.43/1.78 suffix_in_ag(x1, x2) = suffix_in_ag(x2) 3.43/1.78 3.43/1.78 U1_ag(x1, x2, x3) = U1_ag(x3) 3.43/1.78 3.43/1.78 app_in_aag(x1, x2, x3) = app_in_aag(x3) 3.43/1.78 3.43/1.78 app_out_aag(x1, x2, x3) = app_out_aag(x1, x2) 3.43/1.78 3.43/1.78 .(x1, x2) = .(x1, x2) 3.43/1.78 3.43/1.78 U2_aag(x1, x2, x3, x4, x5) = U2_aag(x1, x5) 3.43/1.78 3.43/1.78 suffix_out_ag(x1, x2) = suffix_out_ag(x1) 3.43/1.78 3.43/1.78 SUFFIX_IN_AG(x1, x2) = SUFFIX_IN_AG(x2) 3.43/1.78 3.43/1.78 U1_AG(x1, x2, x3) = U1_AG(x3) 3.43/1.78 3.43/1.78 APP_IN_AAG(x1, x2, x3) = APP_IN_AAG(x3) 3.43/1.78 3.43/1.78 U2_AAG(x1, x2, x3, x4, x5) = U2_AAG(x1, x5) 3.43/1.78 3.43/1.78 3.43/1.78 We have to consider all (P,R,Pi)-chains 3.43/1.78 ---------------------------------------- 3.43/1.78 3.43/1.78 (5) DependencyGraphProof (EQUIVALENT) 3.43/1.78 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes. 3.43/1.78 ---------------------------------------- 3.43/1.78 3.43/1.78 (6) 3.43/1.78 Obligation: 3.43/1.78 Pi DP problem: 3.43/1.78 The TRS P consists of the following rules: 3.43/1.78 3.43/1.78 APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_AAG(Xs, Ys, Zs) 3.43/1.78 3.43/1.78 The TRS R consists of the following rules: 3.43/1.78 3.43/1.78 suffix_in_ag(Xs, Ys) -> U1_ag(Xs, Ys, app_in_aag(X1, Xs, Ys)) 3.43/1.78 app_in_aag([], X, X) -> app_out_aag([], X, X) 3.43/1.78 app_in_aag(.(X, Xs), Ys, .(X, Zs)) -> U2_aag(X, Xs, Ys, Zs, app_in_aag(Xs, Ys, Zs)) 3.43/1.78 U2_aag(X, Xs, Ys, Zs, app_out_aag(Xs, Ys, Zs)) -> app_out_aag(.(X, Xs), Ys, .(X, Zs)) 3.43/1.78 U1_ag(Xs, Ys, app_out_aag(X1, Xs, Ys)) -> suffix_out_ag(Xs, Ys) 3.43/1.78 3.43/1.78 The argument filtering Pi contains the following mapping: 3.43/1.78 suffix_in_ag(x1, x2) = suffix_in_ag(x2) 3.43/1.78 3.43/1.78 U1_ag(x1, x2, x3) = U1_ag(x3) 3.43/1.78 3.43/1.78 app_in_aag(x1, x2, x3) = app_in_aag(x3) 3.43/1.78 3.43/1.78 app_out_aag(x1, x2, x3) = app_out_aag(x1, x2) 3.43/1.78 3.43/1.78 .(x1, x2) = .(x1, x2) 3.43/1.78 3.43/1.78 U2_aag(x1, x2, x3, x4, x5) = U2_aag(x1, x5) 3.43/1.78 3.43/1.78 suffix_out_ag(x1, x2) = suffix_out_ag(x1) 3.43/1.78 3.43/1.78 APP_IN_AAG(x1, x2, x3) = APP_IN_AAG(x3) 3.43/1.78 3.43/1.78 3.43/1.78 We have to consider all (P,R,Pi)-chains 3.43/1.78 ---------------------------------------- 3.43/1.78 3.43/1.78 (7) UsableRulesProof (EQUIVALENT) 3.43/1.78 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.43/1.78 ---------------------------------------- 3.43/1.78 3.43/1.78 (8) 3.43/1.78 Obligation: 3.43/1.78 Pi DP problem: 3.43/1.78 The TRS P consists of the following rules: 3.43/1.78 3.43/1.78 APP_IN_AAG(.(X, Xs), Ys, .(X, Zs)) -> APP_IN_AAG(Xs, Ys, Zs) 3.43/1.78 3.43/1.78 R is empty. 3.43/1.78 The argument filtering Pi contains the following mapping: 3.43/1.78 .(x1, x2) = .(x1, x2) 3.43/1.78 3.43/1.78 APP_IN_AAG(x1, x2, x3) = APP_IN_AAG(x3) 3.43/1.78 3.43/1.78 3.43/1.78 We have to consider all (P,R,Pi)-chains 3.43/1.78 ---------------------------------------- 3.43/1.78 3.43/1.78 (9) PiDPToQDPProof (SOUND) 3.43/1.78 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.43/1.78 ---------------------------------------- 3.43/1.78 3.43/1.78 (10) 3.43/1.78 Obligation: 3.43/1.78 Q DP problem: 3.43/1.78 The TRS P consists of the following rules: 3.43/1.78 3.43/1.78 APP_IN_AAG(.(X, Zs)) -> APP_IN_AAG(Zs) 3.43/1.78 3.43/1.78 R is empty. 3.43/1.78 Q is empty. 3.43/1.78 We have to consider all (P,Q,R)-chains. 3.43/1.78 ---------------------------------------- 3.43/1.78 3.43/1.78 (11) QDPSizeChangeProof (EQUIVALENT) 3.43/1.78 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.43/1.78 3.43/1.78 From the DPs we obtained the following set of size-change graphs: 3.43/1.78 *APP_IN_AAG(.(X, Zs)) -> APP_IN_AAG(Zs) 3.43/1.78 The graph contains the following edges 1 > 1 3.43/1.78 3.43/1.78 3.43/1.78 ---------------------------------------- 3.43/1.78 3.43/1.78 (12) 3.43/1.78 YES 3.78/1.81 EOF