3.70/1.75 YES 3.75/1.76 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 3.75/1.76 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.75/1.76 3.75/1.76 3.75/1.76 Left Termination of the query pattern 3.75/1.76 3.75/1.76 max(a,g,a) 3.75/1.76 3.75/1.76 w.r.t. the given Prolog program could successfully be proven: 3.75/1.76 3.75/1.76 (0) Prolog 3.75/1.76 (1) PrologToPiTRSProof [SOUND, 0 ms] 3.75/1.76 (2) PiTRS 3.75/1.76 (3) DependencyPairsProof [EQUIVALENT, 6 ms] 3.75/1.76 (4) PiDP 3.75/1.76 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 3.75/1.76 (6) AND 3.75/1.76 (7) PiDP 3.75/1.76 (8) UsableRulesProof [EQUIVALENT, 0 ms] 3.75/1.76 (9) PiDP 3.75/1.76 (10) PiDPToQDPProof [SOUND, 0 ms] 3.75/1.76 (11) QDP 3.75/1.76 (12) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.75/1.76 (13) YES 3.75/1.76 (14) PiDP 3.75/1.76 (15) UsableRulesProof [EQUIVALENT, 0 ms] 3.75/1.76 (16) PiDP 3.75/1.76 (17) PiDPToQDPProof [SOUND, 0 ms] 3.75/1.76 (18) QDP 3.75/1.76 (19) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.75/1.76 (20) YES 3.75/1.76 3.75/1.76 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (0) 3.75/1.76 Obligation: 3.75/1.76 Clauses: 3.75/1.76 3.75/1.76 max(X, Y, X) :- less(Y, X). 3.75/1.76 max(X, Y, Y) :- less(X, s(Y)). 3.75/1.76 less(0, s(X1)). 3.75/1.76 less(s(X), s(Y)) :- less(X, Y). 3.75/1.76 3.75/1.76 3.75/1.76 Query: max(a,g,a) 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (1) PrologToPiTRSProof (SOUND) 3.75/1.76 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 3.75/1.76 3.75/1.76 max_in_3: (f,b,f) 3.75/1.76 3.75/1.76 less_in_2: (b,f) (f,b) 3.75/1.76 3.75/1.76 Transforming Prolog into the following Term Rewriting System: 3.75/1.76 3.75/1.76 Pi-finite rewrite system: 3.75/1.76 The TRS R consists of the following rules: 3.75/1.76 3.75/1.76 max_in_aga(X, Y, X) -> U1_aga(X, Y, less_in_ga(Y, X)) 3.75/1.76 less_in_ga(0, s(X1)) -> less_out_ga(0, s(X1)) 3.75/1.76 less_in_ga(s(X), s(Y)) -> U3_ga(X, Y, less_in_ga(X, Y)) 3.75/1.76 U3_ga(X, Y, less_out_ga(X, Y)) -> less_out_ga(s(X), s(Y)) 3.75/1.76 U1_aga(X, Y, less_out_ga(Y, X)) -> max_out_aga(X, Y, X) 3.75/1.76 max_in_aga(X, Y, Y) -> U2_aga(X, Y, less_in_ag(X, s(Y))) 3.75/1.76 less_in_ag(0, s(X1)) -> less_out_ag(0, s(X1)) 3.75/1.76 less_in_ag(s(X), s(Y)) -> U3_ag(X, Y, less_in_ag(X, Y)) 3.75/1.76 U3_ag(X, Y, less_out_ag(X, Y)) -> less_out_ag(s(X), s(Y)) 3.75/1.76 U2_aga(X, Y, less_out_ag(X, s(Y))) -> max_out_aga(X, Y, Y) 3.75/1.76 3.75/1.76 The argument filtering Pi contains the following mapping: 3.75/1.76 max_in_aga(x1, x2, x3) = max_in_aga(x2) 3.75/1.76 3.75/1.76 U1_aga(x1, x2, x3) = U1_aga(x3) 3.75/1.76 3.75/1.76 less_in_ga(x1, x2) = less_in_ga(x1) 3.75/1.76 3.75/1.76 0 = 0 3.75/1.76 3.75/1.76 less_out_ga(x1, x2) = less_out_ga 3.75/1.76 3.75/1.76 s(x1) = s(x1) 3.75/1.76 3.75/1.76 U3_ga(x1, x2, x3) = U3_ga(x3) 3.75/1.76 3.75/1.76 max_out_aga(x1, x2, x3) = max_out_aga 3.75/1.76 3.75/1.76 U2_aga(x1, x2, x3) = U2_aga(x3) 3.75/1.76 3.75/1.76 less_in_ag(x1, x2) = less_in_ag(x2) 3.75/1.76 3.75/1.76 less_out_ag(x1, x2) = less_out_ag(x1) 3.75/1.76 3.75/1.76 U3_ag(x1, x2, x3) = U3_ag(x3) 3.75/1.76 3.75/1.76 3.75/1.76 3.75/1.76 3.75/1.76 3.75/1.76 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 3.75/1.76 3.75/1.76 3.75/1.76 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (2) 3.75/1.76 Obligation: 3.75/1.76 Pi-finite rewrite system: 3.75/1.76 The TRS R consists of the following rules: 3.75/1.76 3.75/1.76 max_in_aga(X, Y, X) -> U1_aga(X, Y, less_in_ga(Y, X)) 3.75/1.76 less_in_ga(0, s(X1)) -> less_out_ga(0, s(X1)) 3.75/1.76 less_in_ga(s(X), s(Y)) -> U3_ga(X, Y, less_in_ga(X, Y)) 3.75/1.76 U3_ga(X, Y, less_out_ga(X, Y)) -> less_out_ga(s(X), s(Y)) 3.75/1.76 U1_aga(X, Y, less_out_ga(Y, X)) -> max_out_aga(X, Y, X) 3.75/1.76 max_in_aga(X, Y, Y) -> U2_aga(X, Y, less_in_ag(X, s(Y))) 3.75/1.76 less_in_ag(0, s(X1)) -> less_out_ag(0, s(X1)) 3.75/1.76 less_in_ag(s(X), s(Y)) -> U3_ag(X, Y, less_in_ag(X, Y)) 3.75/1.76 U3_ag(X, Y, less_out_ag(X, Y)) -> less_out_ag(s(X), s(Y)) 3.75/1.76 U2_aga(X, Y, less_out_ag(X, s(Y))) -> max_out_aga(X, Y, Y) 3.75/1.76 3.75/1.76 The argument filtering Pi contains the following mapping: 3.75/1.76 max_in_aga(x1, x2, x3) = max_in_aga(x2) 3.75/1.76 3.75/1.76 U1_aga(x1, x2, x3) = U1_aga(x3) 3.75/1.76 3.75/1.76 less_in_ga(x1, x2) = less_in_ga(x1) 3.75/1.76 3.75/1.76 0 = 0 3.75/1.76 3.75/1.76 less_out_ga(x1, x2) = less_out_ga 3.75/1.76 3.75/1.76 s(x1) = s(x1) 3.75/1.76 3.75/1.76 U3_ga(x1, x2, x3) = U3_ga(x3) 3.75/1.76 3.75/1.76 max_out_aga(x1, x2, x3) = max_out_aga 3.75/1.76 3.75/1.76 U2_aga(x1, x2, x3) = U2_aga(x3) 3.75/1.76 3.75/1.76 less_in_ag(x1, x2) = less_in_ag(x2) 3.75/1.76 3.75/1.76 less_out_ag(x1, x2) = less_out_ag(x1) 3.75/1.76 3.75/1.76 U3_ag(x1, x2, x3) = U3_ag(x3) 3.75/1.76 3.75/1.76 3.75/1.76 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (3) DependencyPairsProof (EQUIVALENT) 3.75/1.76 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 3.75/1.76 Pi DP problem: 3.75/1.76 The TRS P consists of the following rules: 3.75/1.76 3.75/1.76 MAX_IN_AGA(X, Y, X) -> U1_AGA(X, Y, less_in_ga(Y, X)) 3.75/1.76 MAX_IN_AGA(X, Y, X) -> LESS_IN_GA(Y, X) 3.75/1.76 LESS_IN_GA(s(X), s(Y)) -> U3_GA(X, Y, less_in_ga(X, Y)) 3.75/1.76 LESS_IN_GA(s(X), s(Y)) -> LESS_IN_GA(X, Y) 3.75/1.76 MAX_IN_AGA(X, Y, Y) -> U2_AGA(X, Y, less_in_ag(X, s(Y))) 3.75/1.76 MAX_IN_AGA(X, Y, Y) -> LESS_IN_AG(X, s(Y)) 3.75/1.76 LESS_IN_AG(s(X), s(Y)) -> U3_AG(X, Y, less_in_ag(X, Y)) 3.75/1.76 LESS_IN_AG(s(X), s(Y)) -> LESS_IN_AG(X, Y) 3.75/1.76 3.75/1.76 The TRS R consists of the following rules: 3.75/1.76 3.75/1.76 max_in_aga(X, Y, X) -> U1_aga(X, Y, less_in_ga(Y, X)) 3.75/1.76 less_in_ga(0, s(X1)) -> less_out_ga(0, s(X1)) 3.75/1.76 less_in_ga(s(X), s(Y)) -> U3_ga(X, Y, less_in_ga(X, Y)) 3.75/1.76 U3_ga(X, Y, less_out_ga(X, Y)) -> less_out_ga(s(X), s(Y)) 3.75/1.76 U1_aga(X, Y, less_out_ga(Y, X)) -> max_out_aga(X, Y, X) 3.75/1.76 max_in_aga(X, Y, Y) -> U2_aga(X, Y, less_in_ag(X, s(Y))) 3.75/1.76 less_in_ag(0, s(X1)) -> less_out_ag(0, s(X1)) 3.75/1.76 less_in_ag(s(X), s(Y)) -> U3_ag(X, Y, less_in_ag(X, Y)) 3.75/1.76 U3_ag(X, Y, less_out_ag(X, Y)) -> less_out_ag(s(X), s(Y)) 3.75/1.76 U2_aga(X, Y, less_out_ag(X, s(Y))) -> max_out_aga(X, Y, Y) 3.75/1.76 3.75/1.76 The argument filtering Pi contains the following mapping: 3.75/1.76 max_in_aga(x1, x2, x3) = max_in_aga(x2) 3.75/1.76 3.75/1.76 U1_aga(x1, x2, x3) = U1_aga(x3) 3.75/1.76 3.75/1.76 less_in_ga(x1, x2) = less_in_ga(x1) 3.75/1.76 3.75/1.76 0 = 0 3.75/1.76 3.75/1.76 less_out_ga(x1, x2) = less_out_ga 3.75/1.76 3.75/1.76 s(x1) = s(x1) 3.75/1.76 3.75/1.76 U3_ga(x1, x2, x3) = U3_ga(x3) 3.75/1.76 3.75/1.76 max_out_aga(x1, x2, x3) = max_out_aga 3.75/1.76 3.75/1.76 U2_aga(x1, x2, x3) = U2_aga(x3) 3.75/1.76 3.75/1.76 less_in_ag(x1, x2) = less_in_ag(x2) 3.75/1.76 3.75/1.76 less_out_ag(x1, x2) = less_out_ag(x1) 3.75/1.76 3.75/1.76 U3_ag(x1, x2, x3) = U3_ag(x3) 3.75/1.76 3.75/1.76 MAX_IN_AGA(x1, x2, x3) = MAX_IN_AGA(x2) 3.75/1.76 3.75/1.76 U1_AGA(x1, x2, x3) = U1_AGA(x3) 3.75/1.76 3.75/1.76 LESS_IN_GA(x1, x2) = LESS_IN_GA(x1) 3.75/1.76 3.75/1.76 U3_GA(x1, x2, x3) = U3_GA(x3) 3.75/1.76 3.75/1.76 U2_AGA(x1, x2, x3) = U2_AGA(x3) 3.75/1.76 3.75/1.76 LESS_IN_AG(x1, x2) = LESS_IN_AG(x2) 3.75/1.76 3.75/1.76 U3_AG(x1, x2, x3) = U3_AG(x3) 3.75/1.76 3.75/1.76 3.75/1.76 We have to consider all (P,R,Pi)-chains 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (4) 3.75/1.76 Obligation: 3.75/1.76 Pi DP problem: 3.75/1.76 The TRS P consists of the following rules: 3.75/1.76 3.75/1.76 MAX_IN_AGA(X, Y, X) -> U1_AGA(X, Y, less_in_ga(Y, X)) 3.75/1.76 MAX_IN_AGA(X, Y, X) -> LESS_IN_GA(Y, X) 3.75/1.76 LESS_IN_GA(s(X), s(Y)) -> U3_GA(X, Y, less_in_ga(X, Y)) 3.75/1.76 LESS_IN_GA(s(X), s(Y)) -> LESS_IN_GA(X, Y) 3.75/1.76 MAX_IN_AGA(X, Y, Y) -> U2_AGA(X, Y, less_in_ag(X, s(Y))) 3.75/1.76 MAX_IN_AGA(X, Y, Y) -> LESS_IN_AG(X, s(Y)) 3.75/1.76 LESS_IN_AG(s(X), s(Y)) -> U3_AG(X, Y, less_in_ag(X, Y)) 3.75/1.76 LESS_IN_AG(s(X), s(Y)) -> LESS_IN_AG(X, Y) 3.75/1.76 3.75/1.76 The TRS R consists of the following rules: 3.75/1.76 3.75/1.76 max_in_aga(X, Y, X) -> U1_aga(X, Y, less_in_ga(Y, X)) 3.75/1.76 less_in_ga(0, s(X1)) -> less_out_ga(0, s(X1)) 3.75/1.76 less_in_ga(s(X), s(Y)) -> U3_ga(X, Y, less_in_ga(X, Y)) 3.75/1.76 U3_ga(X, Y, less_out_ga(X, Y)) -> less_out_ga(s(X), s(Y)) 3.75/1.76 U1_aga(X, Y, less_out_ga(Y, X)) -> max_out_aga(X, Y, X) 3.75/1.76 max_in_aga(X, Y, Y) -> U2_aga(X, Y, less_in_ag(X, s(Y))) 3.75/1.76 less_in_ag(0, s(X1)) -> less_out_ag(0, s(X1)) 3.75/1.76 less_in_ag(s(X), s(Y)) -> U3_ag(X, Y, less_in_ag(X, Y)) 3.75/1.76 U3_ag(X, Y, less_out_ag(X, Y)) -> less_out_ag(s(X), s(Y)) 3.75/1.76 U2_aga(X, Y, less_out_ag(X, s(Y))) -> max_out_aga(X, Y, Y) 3.75/1.76 3.75/1.76 The argument filtering Pi contains the following mapping: 3.75/1.76 max_in_aga(x1, x2, x3) = max_in_aga(x2) 3.75/1.76 3.75/1.76 U1_aga(x1, x2, x3) = U1_aga(x3) 3.75/1.76 3.75/1.76 less_in_ga(x1, x2) = less_in_ga(x1) 3.75/1.76 3.75/1.76 0 = 0 3.75/1.76 3.75/1.76 less_out_ga(x1, x2) = less_out_ga 3.75/1.76 3.75/1.76 s(x1) = s(x1) 3.75/1.76 3.75/1.76 U3_ga(x1, x2, x3) = U3_ga(x3) 3.75/1.76 3.75/1.76 max_out_aga(x1, x2, x3) = max_out_aga 3.75/1.76 3.75/1.76 U2_aga(x1, x2, x3) = U2_aga(x3) 3.75/1.76 3.75/1.76 less_in_ag(x1, x2) = less_in_ag(x2) 3.75/1.76 3.75/1.76 less_out_ag(x1, x2) = less_out_ag(x1) 3.75/1.76 3.75/1.76 U3_ag(x1, x2, x3) = U3_ag(x3) 3.75/1.76 3.75/1.76 MAX_IN_AGA(x1, x2, x3) = MAX_IN_AGA(x2) 3.75/1.76 3.75/1.76 U1_AGA(x1, x2, x3) = U1_AGA(x3) 3.75/1.76 3.75/1.76 LESS_IN_GA(x1, x2) = LESS_IN_GA(x1) 3.75/1.76 3.75/1.76 U3_GA(x1, x2, x3) = U3_GA(x3) 3.75/1.76 3.75/1.76 U2_AGA(x1, x2, x3) = U2_AGA(x3) 3.75/1.76 3.75/1.76 LESS_IN_AG(x1, x2) = LESS_IN_AG(x2) 3.75/1.76 3.75/1.76 U3_AG(x1, x2, x3) = U3_AG(x3) 3.75/1.76 3.75/1.76 3.75/1.76 We have to consider all (P,R,Pi)-chains 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (5) DependencyGraphProof (EQUIVALENT) 3.75/1.76 The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes. 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (6) 3.75/1.76 Complex Obligation (AND) 3.75/1.76 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (7) 3.75/1.76 Obligation: 3.75/1.76 Pi DP problem: 3.75/1.76 The TRS P consists of the following rules: 3.75/1.76 3.75/1.76 LESS_IN_AG(s(X), s(Y)) -> LESS_IN_AG(X, Y) 3.75/1.76 3.75/1.76 The TRS R consists of the following rules: 3.75/1.76 3.75/1.76 max_in_aga(X, Y, X) -> U1_aga(X, Y, less_in_ga(Y, X)) 3.75/1.76 less_in_ga(0, s(X1)) -> less_out_ga(0, s(X1)) 3.75/1.76 less_in_ga(s(X), s(Y)) -> U3_ga(X, Y, less_in_ga(X, Y)) 3.75/1.76 U3_ga(X, Y, less_out_ga(X, Y)) -> less_out_ga(s(X), s(Y)) 3.75/1.76 U1_aga(X, Y, less_out_ga(Y, X)) -> max_out_aga(X, Y, X) 3.75/1.76 max_in_aga(X, Y, Y) -> U2_aga(X, Y, less_in_ag(X, s(Y))) 3.75/1.76 less_in_ag(0, s(X1)) -> less_out_ag(0, s(X1)) 3.75/1.76 less_in_ag(s(X), s(Y)) -> U3_ag(X, Y, less_in_ag(X, Y)) 3.75/1.76 U3_ag(X, Y, less_out_ag(X, Y)) -> less_out_ag(s(X), s(Y)) 3.75/1.76 U2_aga(X, Y, less_out_ag(X, s(Y))) -> max_out_aga(X, Y, Y) 3.75/1.76 3.75/1.76 The argument filtering Pi contains the following mapping: 3.75/1.76 max_in_aga(x1, x2, x3) = max_in_aga(x2) 3.75/1.76 3.75/1.76 U1_aga(x1, x2, x3) = U1_aga(x3) 3.75/1.76 3.75/1.76 less_in_ga(x1, x2) = less_in_ga(x1) 3.75/1.76 3.75/1.76 0 = 0 3.75/1.76 3.75/1.76 less_out_ga(x1, x2) = less_out_ga 3.75/1.76 3.75/1.76 s(x1) = s(x1) 3.75/1.76 3.75/1.76 U3_ga(x1, x2, x3) = U3_ga(x3) 3.75/1.76 3.75/1.76 max_out_aga(x1, x2, x3) = max_out_aga 3.75/1.76 3.75/1.76 U2_aga(x1, x2, x3) = U2_aga(x3) 3.75/1.76 3.75/1.76 less_in_ag(x1, x2) = less_in_ag(x2) 3.75/1.76 3.75/1.76 less_out_ag(x1, x2) = less_out_ag(x1) 3.75/1.76 3.75/1.76 U3_ag(x1, x2, x3) = U3_ag(x3) 3.75/1.76 3.75/1.76 LESS_IN_AG(x1, x2) = LESS_IN_AG(x2) 3.75/1.76 3.75/1.76 3.75/1.76 We have to consider all (P,R,Pi)-chains 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (8) UsableRulesProof (EQUIVALENT) 3.75/1.76 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (9) 3.75/1.76 Obligation: 3.75/1.76 Pi DP problem: 3.75/1.76 The TRS P consists of the following rules: 3.75/1.76 3.75/1.76 LESS_IN_AG(s(X), s(Y)) -> LESS_IN_AG(X, Y) 3.75/1.76 3.75/1.76 R is empty. 3.75/1.76 The argument filtering Pi contains the following mapping: 3.75/1.76 s(x1) = s(x1) 3.75/1.76 3.75/1.76 LESS_IN_AG(x1, x2) = LESS_IN_AG(x2) 3.75/1.76 3.75/1.76 3.75/1.76 We have to consider all (P,R,Pi)-chains 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (10) PiDPToQDPProof (SOUND) 3.75/1.76 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (11) 3.75/1.76 Obligation: 3.75/1.76 Q DP problem: 3.75/1.76 The TRS P consists of the following rules: 3.75/1.76 3.75/1.76 LESS_IN_AG(s(Y)) -> LESS_IN_AG(Y) 3.75/1.76 3.75/1.76 R is empty. 3.75/1.76 Q is empty. 3.75/1.76 We have to consider all (P,Q,R)-chains. 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (12) QDPSizeChangeProof (EQUIVALENT) 3.75/1.76 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.75/1.76 3.75/1.76 From the DPs we obtained the following set of size-change graphs: 3.75/1.76 *LESS_IN_AG(s(Y)) -> LESS_IN_AG(Y) 3.75/1.76 The graph contains the following edges 1 > 1 3.75/1.76 3.75/1.76 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (13) 3.75/1.76 YES 3.75/1.76 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (14) 3.75/1.76 Obligation: 3.75/1.76 Pi DP problem: 3.75/1.76 The TRS P consists of the following rules: 3.75/1.76 3.75/1.76 LESS_IN_GA(s(X), s(Y)) -> LESS_IN_GA(X, Y) 3.75/1.76 3.75/1.76 The TRS R consists of the following rules: 3.75/1.76 3.75/1.76 max_in_aga(X, Y, X) -> U1_aga(X, Y, less_in_ga(Y, X)) 3.75/1.76 less_in_ga(0, s(X1)) -> less_out_ga(0, s(X1)) 3.75/1.76 less_in_ga(s(X), s(Y)) -> U3_ga(X, Y, less_in_ga(X, Y)) 3.75/1.76 U3_ga(X, Y, less_out_ga(X, Y)) -> less_out_ga(s(X), s(Y)) 3.75/1.76 U1_aga(X, Y, less_out_ga(Y, X)) -> max_out_aga(X, Y, X) 3.75/1.76 max_in_aga(X, Y, Y) -> U2_aga(X, Y, less_in_ag(X, s(Y))) 3.75/1.76 less_in_ag(0, s(X1)) -> less_out_ag(0, s(X1)) 3.75/1.76 less_in_ag(s(X), s(Y)) -> U3_ag(X, Y, less_in_ag(X, Y)) 3.75/1.76 U3_ag(X, Y, less_out_ag(X, Y)) -> less_out_ag(s(X), s(Y)) 3.75/1.76 U2_aga(X, Y, less_out_ag(X, s(Y))) -> max_out_aga(X, Y, Y) 3.75/1.76 3.75/1.76 The argument filtering Pi contains the following mapping: 3.75/1.76 max_in_aga(x1, x2, x3) = max_in_aga(x2) 3.75/1.76 3.75/1.76 U1_aga(x1, x2, x3) = U1_aga(x3) 3.75/1.76 3.75/1.76 less_in_ga(x1, x2) = less_in_ga(x1) 3.75/1.76 3.75/1.76 0 = 0 3.75/1.76 3.75/1.76 less_out_ga(x1, x2) = less_out_ga 3.75/1.76 3.75/1.76 s(x1) = s(x1) 3.75/1.76 3.75/1.76 U3_ga(x1, x2, x3) = U3_ga(x3) 3.75/1.76 3.75/1.76 max_out_aga(x1, x2, x3) = max_out_aga 3.75/1.76 3.75/1.76 U2_aga(x1, x2, x3) = U2_aga(x3) 3.75/1.76 3.75/1.76 less_in_ag(x1, x2) = less_in_ag(x2) 3.75/1.76 3.75/1.76 less_out_ag(x1, x2) = less_out_ag(x1) 3.75/1.76 3.75/1.76 U3_ag(x1, x2, x3) = U3_ag(x3) 3.75/1.76 3.75/1.76 LESS_IN_GA(x1, x2) = LESS_IN_GA(x1) 3.75/1.76 3.75/1.76 3.75/1.76 We have to consider all (P,R,Pi)-chains 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (15) UsableRulesProof (EQUIVALENT) 3.75/1.76 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (16) 3.75/1.76 Obligation: 3.75/1.76 Pi DP problem: 3.75/1.76 The TRS P consists of the following rules: 3.75/1.76 3.75/1.76 LESS_IN_GA(s(X), s(Y)) -> LESS_IN_GA(X, Y) 3.75/1.76 3.75/1.76 R is empty. 3.75/1.76 The argument filtering Pi contains the following mapping: 3.75/1.76 s(x1) = s(x1) 3.75/1.76 3.75/1.76 LESS_IN_GA(x1, x2) = LESS_IN_GA(x1) 3.75/1.76 3.75/1.76 3.75/1.76 We have to consider all (P,R,Pi)-chains 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (17) PiDPToQDPProof (SOUND) 3.75/1.76 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (18) 3.75/1.76 Obligation: 3.75/1.76 Q DP problem: 3.75/1.76 The TRS P consists of the following rules: 3.75/1.76 3.75/1.76 LESS_IN_GA(s(X)) -> LESS_IN_GA(X) 3.75/1.76 3.75/1.76 R is empty. 3.75/1.76 Q is empty. 3.75/1.76 We have to consider all (P,Q,R)-chains. 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (19) QDPSizeChangeProof (EQUIVALENT) 3.75/1.76 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.75/1.76 3.75/1.76 From the DPs we obtained the following set of size-change graphs: 3.75/1.76 *LESS_IN_GA(s(X)) -> LESS_IN_GA(X) 3.75/1.76 The graph contains the following edges 1 > 1 3.75/1.76 3.75/1.76 3.75/1.76 ---------------------------------------- 3.75/1.76 3.75/1.76 (20) 3.75/1.76 YES 3.75/1.79 EOF