3.57/1.82 YES 3.70/1.83 proof of /export/starexec/sandbox/benchmark/theBenchmark.pl 3.70/1.83 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.70/1.83 3.70/1.83 3.70/1.83 Left Termination of the query pattern 3.70/1.83 3.70/1.83 len1(g,a) 3.70/1.83 3.70/1.83 w.r.t. the given Prolog program could successfully be proven: 3.70/1.83 3.70/1.83 (0) Prolog 3.70/1.83 (1) PrologToPiTRSProof [SOUND, 0 ms] 3.70/1.83 (2) PiTRS 3.70/1.83 (3) DependencyPairsProof [EQUIVALENT, 0 ms] 3.70/1.83 (4) PiDP 3.70/1.83 (5) DependencyGraphProof [EQUIVALENT, 0 ms] 3.70/1.83 (6) PiDP 3.70/1.83 (7) UsableRulesProof [EQUIVALENT, 0 ms] 3.70/1.83 (8) PiDP 3.70/1.83 (9) PiDPToQDPProof [SOUND, 8 ms] 3.70/1.83 (10) QDP 3.70/1.83 (11) QDPSizeChangeProof [EQUIVALENT, 0 ms] 3.70/1.83 (12) YES 3.70/1.83 3.70/1.83 3.70/1.83 ---------------------------------------- 3.70/1.83 3.70/1.83 (0) 3.70/1.83 Obligation: 3.70/1.83 Clauses: 3.70/1.83 3.70/1.83 len1([], 0). 3.70/1.83 len1(.(X1, Ts), N) :- ','(len1(Ts, M), eq(N, s(M))). 3.70/1.83 eq(X, X). 3.70/1.83 3.70/1.83 3.70/1.83 Query: len1(g,a) 3.70/1.83 ---------------------------------------- 3.70/1.83 3.70/1.83 (1) PrologToPiTRSProof (SOUND) 3.70/1.83 We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes: 3.70/1.83 3.70/1.83 len1_in_2: (b,f) 3.70/1.83 3.70/1.83 Transforming Prolog into the following Term Rewriting System: 3.70/1.83 3.70/1.83 Pi-finite rewrite system: 3.70/1.83 The TRS R consists of the following rules: 3.70/1.83 3.70/1.83 len1_in_ga([], 0) -> len1_out_ga([], 0) 3.70/1.83 len1_in_ga(.(X1, Ts), N) -> U1_ga(X1, Ts, N, len1_in_ga(Ts, M)) 3.70/1.83 U1_ga(X1, Ts, N, len1_out_ga(Ts, M)) -> U2_ga(X1, Ts, N, M, eq_in_ag(N, s(M))) 3.70/1.83 eq_in_ag(X, X) -> eq_out_ag(X, X) 3.70/1.83 U2_ga(X1, Ts, N, M, eq_out_ag(N, s(M))) -> len1_out_ga(.(X1, Ts), N) 3.70/1.83 3.70/1.83 The argument filtering Pi contains the following mapping: 3.70/1.83 len1_in_ga(x1, x2) = len1_in_ga(x1) 3.70/1.83 3.70/1.83 [] = [] 3.70/1.83 3.70/1.83 len1_out_ga(x1, x2) = len1_out_ga(x2) 3.70/1.83 3.70/1.83 .(x1, x2) = .(x1, x2) 3.70/1.83 3.70/1.83 U1_ga(x1, x2, x3, x4) = U1_ga(x4) 3.70/1.83 3.70/1.83 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 3.70/1.83 3.70/1.83 eq_in_ag(x1, x2) = eq_in_ag(x2) 3.70/1.83 3.70/1.83 eq_out_ag(x1, x2) = eq_out_ag(x1) 3.70/1.83 3.70/1.83 s(x1) = s(x1) 3.70/1.83 3.70/1.83 3.70/1.83 3.70/1.83 3.70/1.83 3.70/1.83 Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog 3.70/1.83 3.70/1.83 3.70/1.83 3.70/1.83 ---------------------------------------- 3.70/1.83 3.70/1.83 (2) 3.70/1.83 Obligation: 3.70/1.83 Pi-finite rewrite system: 3.70/1.83 The TRS R consists of the following rules: 3.70/1.83 3.70/1.83 len1_in_ga([], 0) -> len1_out_ga([], 0) 3.70/1.83 len1_in_ga(.(X1, Ts), N) -> U1_ga(X1, Ts, N, len1_in_ga(Ts, M)) 3.70/1.83 U1_ga(X1, Ts, N, len1_out_ga(Ts, M)) -> U2_ga(X1, Ts, N, M, eq_in_ag(N, s(M))) 3.70/1.83 eq_in_ag(X, X) -> eq_out_ag(X, X) 3.70/1.83 U2_ga(X1, Ts, N, M, eq_out_ag(N, s(M))) -> len1_out_ga(.(X1, Ts), N) 3.70/1.83 3.70/1.83 The argument filtering Pi contains the following mapping: 3.70/1.83 len1_in_ga(x1, x2) = len1_in_ga(x1) 3.70/1.83 3.70/1.83 [] = [] 3.70/1.83 3.70/1.83 len1_out_ga(x1, x2) = len1_out_ga(x2) 3.70/1.83 3.70/1.83 .(x1, x2) = .(x1, x2) 3.70/1.83 3.70/1.83 U1_ga(x1, x2, x3, x4) = U1_ga(x4) 3.70/1.83 3.70/1.83 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 3.70/1.83 3.70/1.83 eq_in_ag(x1, x2) = eq_in_ag(x2) 3.70/1.83 3.70/1.83 eq_out_ag(x1, x2) = eq_out_ag(x1) 3.70/1.83 3.70/1.83 s(x1) = s(x1) 3.70/1.83 3.70/1.83 3.70/1.83 3.70/1.83 ---------------------------------------- 3.70/1.83 3.70/1.83 (3) DependencyPairsProof (EQUIVALENT) 3.70/1.83 Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem: 3.70/1.83 Pi DP problem: 3.70/1.83 The TRS P consists of the following rules: 3.70/1.83 3.70/1.83 LEN1_IN_GA(.(X1, Ts), N) -> U1_GA(X1, Ts, N, len1_in_ga(Ts, M)) 3.70/1.83 LEN1_IN_GA(.(X1, Ts), N) -> LEN1_IN_GA(Ts, M) 3.70/1.83 U1_GA(X1, Ts, N, len1_out_ga(Ts, M)) -> U2_GA(X1, Ts, N, M, eq_in_ag(N, s(M))) 3.70/1.83 U1_GA(X1, Ts, N, len1_out_ga(Ts, M)) -> EQ_IN_AG(N, s(M)) 3.70/1.83 3.70/1.83 The TRS R consists of the following rules: 3.70/1.83 3.70/1.83 len1_in_ga([], 0) -> len1_out_ga([], 0) 3.70/1.83 len1_in_ga(.(X1, Ts), N) -> U1_ga(X1, Ts, N, len1_in_ga(Ts, M)) 3.70/1.83 U1_ga(X1, Ts, N, len1_out_ga(Ts, M)) -> U2_ga(X1, Ts, N, M, eq_in_ag(N, s(M))) 3.70/1.83 eq_in_ag(X, X) -> eq_out_ag(X, X) 3.70/1.83 U2_ga(X1, Ts, N, M, eq_out_ag(N, s(M))) -> len1_out_ga(.(X1, Ts), N) 3.70/1.83 3.70/1.83 The argument filtering Pi contains the following mapping: 3.70/1.83 len1_in_ga(x1, x2) = len1_in_ga(x1) 3.70/1.83 3.70/1.83 [] = [] 3.70/1.83 3.70/1.83 len1_out_ga(x1, x2) = len1_out_ga(x2) 3.70/1.83 3.70/1.83 .(x1, x2) = .(x1, x2) 3.70/1.83 3.70/1.83 U1_ga(x1, x2, x3, x4) = U1_ga(x4) 3.70/1.83 3.70/1.83 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 3.70/1.83 3.70/1.83 eq_in_ag(x1, x2) = eq_in_ag(x2) 3.70/1.83 3.70/1.83 eq_out_ag(x1, x2) = eq_out_ag(x1) 3.70/1.83 3.70/1.83 s(x1) = s(x1) 3.70/1.83 3.70/1.83 LEN1_IN_GA(x1, x2) = LEN1_IN_GA(x1) 3.70/1.83 3.70/1.83 U1_GA(x1, x2, x3, x4) = U1_GA(x4) 3.70/1.83 3.70/1.83 U2_GA(x1, x2, x3, x4, x5) = U2_GA(x5) 3.70/1.83 3.70/1.83 EQ_IN_AG(x1, x2) = EQ_IN_AG(x2) 3.70/1.83 3.70/1.83 3.70/1.83 We have to consider all (P,R,Pi)-chains 3.70/1.83 ---------------------------------------- 3.70/1.83 3.70/1.83 (4) 3.70/1.83 Obligation: 3.70/1.83 Pi DP problem: 3.70/1.83 The TRS P consists of the following rules: 3.70/1.83 3.70/1.83 LEN1_IN_GA(.(X1, Ts), N) -> U1_GA(X1, Ts, N, len1_in_ga(Ts, M)) 3.70/1.83 LEN1_IN_GA(.(X1, Ts), N) -> LEN1_IN_GA(Ts, M) 3.70/1.83 U1_GA(X1, Ts, N, len1_out_ga(Ts, M)) -> U2_GA(X1, Ts, N, M, eq_in_ag(N, s(M))) 3.70/1.83 U1_GA(X1, Ts, N, len1_out_ga(Ts, M)) -> EQ_IN_AG(N, s(M)) 3.70/1.83 3.70/1.83 The TRS R consists of the following rules: 3.70/1.83 3.70/1.83 len1_in_ga([], 0) -> len1_out_ga([], 0) 3.70/1.83 len1_in_ga(.(X1, Ts), N) -> U1_ga(X1, Ts, N, len1_in_ga(Ts, M)) 3.70/1.83 U1_ga(X1, Ts, N, len1_out_ga(Ts, M)) -> U2_ga(X1, Ts, N, M, eq_in_ag(N, s(M))) 3.70/1.83 eq_in_ag(X, X) -> eq_out_ag(X, X) 3.70/1.83 U2_ga(X1, Ts, N, M, eq_out_ag(N, s(M))) -> len1_out_ga(.(X1, Ts), N) 3.70/1.83 3.70/1.83 The argument filtering Pi contains the following mapping: 3.70/1.83 len1_in_ga(x1, x2) = len1_in_ga(x1) 3.70/1.83 3.70/1.83 [] = [] 3.70/1.83 3.70/1.83 len1_out_ga(x1, x2) = len1_out_ga(x2) 3.70/1.83 3.70/1.83 .(x1, x2) = .(x1, x2) 3.70/1.83 3.70/1.83 U1_ga(x1, x2, x3, x4) = U1_ga(x4) 3.70/1.83 3.70/1.83 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 3.70/1.83 3.70/1.83 eq_in_ag(x1, x2) = eq_in_ag(x2) 3.70/1.83 3.70/1.83 eq_out_ag(x1, x2) = eq_out_ag(x1) 3.70/1.83 3.70/1.83 s(x1) = s(x1) 3.70/1.83 3.70/1.83 LEN1_IN_GA(x1, x2) = LEN1_IN_GA(x1) 3.70/1.83 3.70/1.83 U1_GA(x1, x2, x3, x4) = U1_GA(x4) 3.70/1.83 3.70/1.83 U2_GA(x1, x2, x3, x4, x5) = U2_GA(x5) 3.70/1.83 3.70/1.83 EQ_IN_AG(x1, x2) = EQ_IN_AG(x2) 3.70/1.83 3.70/1.83 3.70/1.83 We have to consider all (P,R,Pi)-chains 3.70/1.83 ---------------------------------------- 3.70/1.83 3.70/1.83 (5) DependencyGraphProof (EQUIVALENT) 3.70/1.83 The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes. 3.70/1.83 ---------------------------------------- 3.70/1.83 3.70/1.83 (6) 3.70/1.83 Obligation: 3.70/1.83 Pi DP problem: 3.70/1.83 The TRS P consists of the following rules: 3.70/1.83 3.70/1.83 LEN1_IN_GA(.(X1, Ts), N) -> LEN1_IN_GA(Ts, M) 3.70/1.83 3.70/1.83 The TRS R consists of the following rules: 3.70/1.83 3.70/1.83 len1_in_ga([], 0) -> len1_out_ga([], 0) 3.70/1.83 len1_in_ga(.(X1, Ts), N) -> U1_ga(X1, Ts, N, len1_in_ga(Ts, M)) 3.70/1.83 U1_ga(X1, Ts, N, len1_out_ga(Ts, M)) -> U2_ga(X1, Ts, N, M, eq_in_ag(N, s(M))) 3.70/1.83 eq_in_ag(X, X) -> eq_out_ag(X, X) 3.70/1.83 U2_ga(X1, Ts, N, M, eq_out_ag(N, s(M))) -> len1_out_ga(.(X1, Ts), N) 3.70/1.83 3.70/1.83 The argument filtering Pi contains the following mapping: 3.70/1.83 len1_in_ga(x1, x2) = len1_in_ga(x1) 3.70/1.83 3.70/1.83 [] = [] 3.70/1.83 3.70/1.83 len1_out_ga(x1, x2) = len1_out_ga(x2) 3.70/1.83 3.70/1.83 .(x1, x2) = .(x1, x2) 3.70/1.83 3.70/1.83 U1_ga(x1, x2, x3, x4) = U1_ga(x4) 3.70/1.83 3.70/1.83 U2_ga(x1, x2, x3, x4, x5) = U2_ga(x5) 3.70/1.83 3.70/1.83 eq_in_ag(x1, x2) = eq_in_ag(x2) 3.70/1.83 3.70/1.83 eq_out_ag(x1, x2) = eq_out_ag(x1) 3.70/1.83 3.70/1.83 s(x1) = s(x1) 3.70/1.83 3.70/1.83 LEN1_IN_GA(x1, x2) = LEN1_IN_GA(x1) 3.70/1.83 3.70/1.83 3.70/1.83 We have to consider all (P,R,Pi)-chains 3.70/1.83 ---------------------------------------- 3.70/1.83 3.70/1.83 (7) UsableRulesProof (EQUIVALENT) 3.70/1.83 For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R. 3.70/1.83 ---------------------------------------- 3.70/1.83 3.70/1.83 (8) 3.70/1.83 Obligation: 3.70/1.83 Pi DP problem: 3.70/1.83 The TRS P consists of the following rules: 3.70/1.83 3.70/1.83 LEN1_IN_GA(.(X1, Ts), N) -> LEN1_IN_GA(Ts, M) 3.70/1.83 3.70/1.83 R is empty. 3.70/1.83 The argument filtering Pi contains the following mapping: 3.70/1.83 .(x1, x2) = .(x1, x2) 3.70/1.83 3.70/1.83 LEN1_IN_GA(x1, x2) = LEN1_IN_GA(x1) 3.70/1.83 3.70/1.83 3.70/1.83 We have to consider all (P,R,Pi)-chains 3.70/1.83 ---------------------------------------- 3.70/1.83 3.70/1.83 (9) PiDPToQDPProof (SOUND) 3.70/1.83 Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi. 3.70/1.83 ---------------------------------------- 3.70/1.83 3.70/1.83 (10) 3.70/1.83 Obligation: 3.70/1.83 Q DP problem: 3.70/1.83 The TRS P consists of the following rules: 3.70/1.83 3.70/1.83 LEN1_IN_GA(.(X1, Ts)) -> LEN1_IN_GA(Ts) 3.70/1.83 3.70/1.83 R is empty. 3.70/1.83 Q is empty. 3.70/1.83 We have to consider all (P,Q,R)-chains. 3.70/1.83 ---------------------------------------- 3.70/1.83 3.70/1.83 (11) QDPSizeChangeProof (EQUIVALENT) 3.70/1.83 By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem. 3.70/1.83 3.70/1.83 From the DPs we obtained the following set of size-change graphs: 3.70/1.83 *LEN1_IN_GA(.(X1, Ts)) -> LEN1_IN_GA(Ts) 3.70/1.83 The graph contains the following edges 1 > 1 3.70/1.83 3.70/1.83 3.70/1.83 ---------------------------------------- 3.70/1.83 3.70/1.83 (12) 3.70/1.83 YES 3.74/1.88 EOF