WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1_0_main_Load -> f91_0_divBy_LE : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2P_1>-1 && arg2>0 && arg1>0 && 0==arg1P_1 ], cost: 1 1: f91_0_divBy_LE -> f91_0_divBy_LE\' : arg1'=arg1P_2, arg2'=arg2P_2, [ arg2>0 && arg2>x7_1 && x7_1>-1 && arg1>-1 && arg1==arg1P_2 && arg2==arg2P_2 ], cost: 1 2: f91_0_divBy_LE\' -> f91_0_divBy_LE : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2>0 && arg2>arg2P_3 && arg1>-1 && arg2P_3>-1 && arg2-2*arg2P_3<2 && arg2-2*arg2P_3>=0 && arg1+arg2P_3==arg1P_3 ], cost: 1 3: __init -> f1_0_main_Load : arg1'=arg1P_4, arg2'=arg2P_4, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 3: __init -> f1_0_main_Load : arg1'=arg1P_4, arg2'=arg2P_4, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1_0_main_Load -> f91_0_divBy_LE : arg1'=0, arg2'=arg2P_1, [ arg2P_1>-1 && arg2>0 && arg1>0 ], cost: 1 1: f91_0_divBy_LE -> f91_0_divBy_LE\' : [ arg1>-1 && 0<=-1+arg2 ], cost: 1 2: f91_0_divBy_LE\' -> f91_0_divBy_LE : arg1'=arg1+arg2P_3, arg2'=arg2P_3, [ arg2>arg2P_3 && arg1>-1 && arg2P_3>-1 && arg2-2*arg2P_3<2 && arg2-2*arg2P_3>=0 ], cost: 1 3: __init -> f1_0_main_Load : arg1'=arg1P_4, arg2'=arg2P_4, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 5: f91_0_divBy_LE -> f91_0_divBy_LE : arg1'=arg1+arg2P_3, arg2'=arg2P_3, [ arg1>-1 && 0<=-1+arg2 && arg2>arg2P_3 && arg2P_3>-1 && arg2-2*arg2P_3<2 && arg2-2*arg2P_3>=0 ], cost: 2 4: __init -> f91_0_divBy_LE : arg1'=0, arg2'=arg2P_1, [ arg2P_1>-1 && arg2P_4>0 && arg1P_4>0 ], cost: 2 Accelerating simple loops of location 1. Accelerating the following rules: 5: f91_0_divBy_LE -> f91_0_divBy_LE : arg1'=arg1+arg2P_3, arg2'=arg2P_3, [ arg1>-1 && 0<=-1+arg2 && arg2>arg2P_3 && arg2P_3>-1 && arg2-2*arg2P_3<2 && arg2-2*arg2P_3>=0 ], cost: 2 During metering: Instantiating temporary variables by {arg2P_3==-1+arg2} Accelerated rule 5 with metering function arg2, yielding the new rule 6. Removing the simple loops: 5. Accelerated all simple loops using metering functions (where possible): Start location: __init 6: f91_0_divBy_LE -> f91_0_divBy_LE : arg1'=1/2*arg2^2+arg1-1/2*arg2, arg2'=0, [ arg1>-1 && 0<=-1+arg2 && 2-arg2>=0 ], cost: 2*arg2 4: __init -> f91_0_divBy_LE : arg1'=0, arg2'=arg2P_1, [ arg2P_1>-1 && arg2P_4>0 && arg1P_4>0 ], cost: 2 Chained accelerated rules (with incoming rules): Start location: __init 4: __init -> f91_0_divBy_LE : arg1'=0, arg2'=arg2P_1, [ arg2P_1>-1 && arg2P_4>0 && arg1P_4>0 ], cost: 2 7: __init -> f91_0_divBy_LE : arg1'=-1/2*arg2P_1+1/2*arg2P_1^2, arg2'=0, [ 0<=-1+arg2P_1 && 2-arg2P_1>=0 ], cost: 2+2*arg2P_1 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 7: __init -> f91_0_divBy_LE : arg1'=-1/2*arg2P_1+1/2*arg2P_1^2, arg2'=0, [ 0<=-1+arg2P_1 && 2-arg2P_1>=0 ], cost: 2+2*arg2P_1 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 7: __init -> f91_0_divBy_LE : arg1'=-1/2*arg2P_1+1/2*arg2P_1^2, arg2'=0, [ 0<=-1+arg2P_1 && 2-arg2P_1>=0 ], cost: 2+2*arg2P_1 Computing asymptotic complexity for rule 7 Could not solve the limit problem. Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)