WORST_CASE(INF,?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1_0_main_Load -> f172_0_appendNewList_LE : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2>0 && arg1P_1>-1 && arg1>0 && 0==arg2P_1 ], cost: 1 1: f172_0_appendNewList_LE -> f172_0_appendNewList_LE : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg2P_2>arg2 && arg1>1 && arg2>0 && -1+arg1==arg1P_2 ], cost: 1 2: f172_0_appendNewList_LE -> f172_0_appendNewList_LE : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1>1 && -1+arg1==arg1P_3 && 1==arg2P_3 ], cost: 1 3: f172_0_appendNewList_LE -> f282_0_copy_NULL : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg1P_4>1 && arg2P_4>3 && arg1<2 && 0==arg3P_4 ], cost: 1 4: f282_0_copy_NULL -> f282_0_copy_NULL : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ -1+arg1P_5<=arg2 && 1+arg2P_5<=arg2 && arg1>1 && arg2>0 && arg1P_5>1 && arg2P_5>-1 && 2+arg3<=arg1 && 2+arg3P_5<=arg2 ], cost: 1 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1_0_main_Load -> f172_0_appendNewList_LE : arg1'=arg1P_1, arg2'=0, arg3'=arg3P_1, [ arg2>0 && arg1P_1>-1 && arg1>0 ], cost: 1 1: f172_0_appendNewList_LE -> f172_0_appendNewList_LE : arg1'=-1+arg1, arg2'=arg2P_2, arg3'=arg3P_2, [ arg2P_2>arg2 && arg1>1 && arg2>0 ], cost: 1 2: f172_0_appendNewList_LE -> f172_0_appendNewList_LE : arg1'=-1+arg1, arg2'=1, arg3'=arg3P_3, [ arg1>1 ], cost: 1 3: f172_0_appendNewList_LE -> f282_0_copy_NULL : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=0, [ arg1P_4>1 && arg2P_4>3 && arg1<2 ], cost: 1 4: f282_0_copy_NULL -> f282_0_copy_NULL : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ -1+arg1P_5<=arg2 && 1+arg2P_5<=arg2 && arg1>1 && arg2>0 && arg1P_5>1 && arg2P_5>-1 && 2+arg3<=arg1 && 2+arg3P_5<=arg2 ], cost: 1 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f172_0_appendNewList_LE -> f172_0_appendNewList_LE : arg1'=-1+arg1, arg2'=arg2P_2, arg3'=arg3P_2, [ arg2P_2>arg2 && arg1>1 && arg2>0 ], cost: 1 2: f172_0_appendNewList_LE -> f172_0_appendNewList_LE : arg1'=-1+arg1, arg2'=1, arg3'=arg3P_3, [ arg1>1 ], cost: 1 During metering: Instantiating temporary variables by {arg2P_2==1+arg2} Accelerated rule 1 with metering function -1+arg1, yielding the new rule 6. Accelerated rule 2 with metering function -1+arg1, yielding the new rule 7. Removing the simple loops: 1 2. Accelerating simple loops of location 2. Accelerating the following rules: 4: f282_0_copy_NULL -> f282_0_copy_NULL : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ -1+arg1P_5<=arg2 && 1+arg2P_5<=arg2 && arg1>1 && arg2>0 && arg1P_5>1 && arg2P_5>-1 && 2+arg3<=arg1 && 2+arg3P_5<=arg2 ], cost: 1 During metering: Instantiating temporary variables by {arg3P_5==-2+arg2,arg1P_5==1+arg2,arg2P_5==-1+arg2} Accelerated rule 4 with metering function arg2, yielding the new rule 8. Removing the simple loops: 4. Accelerated all simple loops using metering functions (where possible): Start location: __init 0: f1_0_main_Load -> f172_0_appendNewList_LE : arg1'=arg1P_1, arg2'=0, arg3'=arg3P_1, [ arg2>0 && arg1P_1>-1 && arg1>0 ], cost: 1 3: f172_0_appendNewList_LE -> f282_0_copy_NULL : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=0, [ arg1P_4>1 && arg2P_4>3 && arg1<2 ], cost: 1 6: f172_0_appendNewList_LE -> f172_0_appendNewList_LE : arg1'=1, arg2'=-1+arg1+arg2, arg3'=arg3P_2, [ arg1>1 && arg2>0 ], cost: -1+arg1 7: f172_0_appendNewList_LE -> f172_0_appendNewList_LE : arg1'=1, arg2'=1, arg3'=arg3P_3, [ arg1>1 ], cost: -1+arg1 8: f282_0_copy_NULL -> f282_0_copy_NULL : arg1'=2, arg2'=0, arg3'=-1, [ arg1>1 && arg2>0 && 2+arg3<=arg1 ], cost: arg2 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: __init 0: f1_0_main_Load -> f172_0_appendNewList_LE : arg1'=arg1P_1, arg2'=0, arg3'=arg3P_1, [ arg2>0 && arg1P_1>-1 && arg1>0 ], cost: 1 9: f1_0_main_Load -> f172_0_appendNewList_LE : arg1'=1, arg2'=1, arg3'=arg3P_3, [ arg2>0 && arg1>0 && arg1P_1>1 ], cost: arg1P_1 3: f172_0_appendNewList_LE -> f282_0_copy_NULL : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=0, [ arg1P_4>1 && arg2P_4>3 && arg1<2 ], cost: 1 10: f172_0_appendNewList_LE -> f282_0_copy_NULL : arg1'=2, arg2'=0, arg3'=-1, [ arg2P_4>3 && arg1<2 ], cost: 1+arg2P_4 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [], cost: 1 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 0: f1_0_main_Load -> f172_0_appendNewList_LE : arg1'=arg1P_1, arg2'=0, arg3'=arg3P_1, [ arg2>0 && arg1P_1>-1 && arg1>0 ], cost: 1 9: f1_0_main_Load -> f172_0_appendNewList_LE : arg1'=1, arg2'=1, arg3'=arg3P_3, [ arg2>0 && arg1>0 && arg1P_1>1 ], cost: arg1P_1 10: f172_0_appendNewList_LE -> f282_0_copy_NULL : arg1'=2, arg2'=0, arg3'=-1, [ arg2P_4>3 && arg1<2 ], cost: 1+arg2P_4 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [], cost: 1 Eliminated locations (on tree-shaped paths): Start location: __init 10: f172_0_appendNewList_LE -> f282_0_copy_NULL : arg1'=2, arg2'=0, arg3'=-1, [ arg2P_4>3 && arg1<2 ], cost: 1+arg2P_4 11: __init -> f172_0_appendNewList_LE : arg1'=arg1P_1, arg2'=0, arg3'=arg3P_1, [ arg2P_6>0 && arg1P_1>-1 && arg1P_6>0 ], cost: 2 12: __init -> f172_0_appendNewList_LE : arg1'=1, arg2'=1, arg3'=arg3P_3, [ arg2P_6>0 && arg1P_6>0 && arg1P_1>1 ], cost: 1+arg1P_1 Eliminated locations (on tree-shaped paths): Start location: __init 13: __init -> f282_0_copy_NULL : arg1'=2, arg2'=0, arg3'=-1, [ arg2P_6>0 && arg1P_1>-1 && arg1P_6>0 && arg2P_4>3 && arg1P_1<2 ], cost: 3+arg2P_4 14: __init -> f282_0_copy_NULL : arg1'=2, arg2'=0, arg3'=-1, [ arg2P_6>0 && arg1P_6>0 && arg1P_1>1 && arg2P_4>3 ], cost: 2+arg1P_1+arg2P_4 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 13: __init -> f282_0_copy_NULL : arg1'=2, arg2'=0, arg3'=-1, [ arg2P_6>0 && arg1P_1>-1 && arg1P_6>0 && arg2P_4>3 && arg1P_1<2 ], cost: 3+arg2P_4 14: __init -> f282_0_copy_NULL : arg1'=2, arg2'=0, arg3'=-1, [ arg2P_6>0 && arg1P_6>0 && arg1P_1>1 && arg2P_4>3 ], cost: 2+arg1P_1+arg2P_4 Computing asymptotic complexity for rule 13 Solved the limit problem by the following transformations: Created initial limit problem: 1+arg1P_1 (+/+!), arg1P_6 (+/+!), 3+arg2P_4 (+), arg2P_6 (+/+!), 2-arg1P_1 (+/+!), -3+arg2P_4 (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {arg1P_6==n,arg2P_6==1,arg1P_1==0,arg2P_4==n} resulting limit problem: [solved] Solution: arg1P_6 / n arg2P_6 / 1 arg1P_1 / 0 arg2P_4 / n Resulting cost 3+n has complexity: Unbounded Found new complexity Unbounded. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Unbounded Cpx degree: Unbounded Solved cost: 3+n Rule cost: 3+arg2P_4 Rule guard: [ arg2P_6>0 && arg1P_1>-1 && arg1P_6>0 && arg2P_4>3 && arg1P_1<2 ] WORST_CASE(INF,?)