WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1_0_main_Load -> f113_0_upAndDown_GT : arg1'=arg1P_1, arg2'=arg2P_1, [ arg1>0 && arg2>-1 && 0==arg1P_1 && arg2==arg2P_1 ], cost: 1 1: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=arg1P_2, arg2'=arg2P_2, [ arg2<10 && arg2<11 && arg2>0 && 1==arg1 && 1==arg1P_2 && 1+arg2==arg2P_2 ], cost: 1 2: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2<10 && arg2>0 && arg2<11 && 0==arg1 && 0==arg1P_3 && -1+arg2==arg2P_3 ], cost: 1 3: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=arg1P_4, arg2'=arg2P_4, [ 10==arg2 && 0==arg1P_4 && 9==arg2P_4 ], cost: 1 4: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=arg1P_5, arg2'=arg2P_5, [ 0==arg2 && 1==arg1P_5 && 1==arg2P_5 ], cost: 1 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1_0_main_Load -> f113_0_upAndDown_GT : arg1'=0, [ arg1>0 && arg2>-1 ], cost: 1 1: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=1, arg2'=1+arg2, [ arg2<10 && arg2>0 && 1==arg1 ], cost: 1 2: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=0, arg2'=-1+arg2, [ arg2<10 && arg2>0 && 0==arg1 ], cost: 1 3: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=0, arg2'=9, [ 10==arg2 ], cost: 1 4: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=1, arg2'=1, [ 0==arg2 ], cost: 1 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=1, arg2'=1+arg2, [ arg2<10 && arg2>0 && 1==arg1 ], cost: 1 2: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=0, arg2'=-1+arg2, [ arg2<10 && arg2>0 && 0==arg1 ], cost: 1 3: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=0, arg2'=9, [ 10==arg2 ], cost: 1 4: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=1, arg2'=1, [ 0==arg2 ], cost: 1 Accelerated rule 1 with metering function 10-arg2, yielding the new rule 6. Accelerated rule 2 with metering function arg2, yielding the new rule 7. Accelerated rule 3 with metering function -9+arg2, yielding the new rule 8. Accelerated rule 4 with metering function 1-arg2, yielding the new rule 9. Removing the simple loops: 1 2 3 4. Accelerated all simple loops using metering functions (where possible): Start location: __init 0: f1_0_main_Load -> f113_0_upAndDown_GT : arg1'=0, [ arg1>0 && arg2>-1 ], cost: 1 6: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=1, arg2'=10, [ arg2<10 && arg2>0 && 1==arg1 ], cost: 10-arg2 7: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=0, arg2'=0, [ arg2<10 && arg2>0 && 0==arg1 ], cost: arg2 8: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=0, arg2'=9, [ 10==arg2 ], cost: -9+arg2 9: f113_0_upAndDown_GT -> f113_0_upAndDown_GT : arg1'=1, arg2'=1, [ 0==arg2 ], cost: 1-arg2 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: __init 0: f1_0_main_Load -> f113_0_upAndDown_GT : arg1'=0, [ arg1>0 && arg2>-1 ], cost: 1 10: f1_0_main_Load -> f113_0_upAndDown_GT : arg1'=0, arg2'=0, [ arg1>0 && arg2<10 && arg2>0 ], cost: 1+arg2 11: f1_0_main_Load -> f113_0_upAndDown_GT : arg1'=0, arg2'=9, [ arg1>0 && 10==arg2 ], cost: -8+arg2 12: f1_0_main_Load -> f113_0_upAndDown_GT : arg1'=1, arg2'=1, [ arg1>0 && 0==arg2 ], cost: 2-arg2 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, [], cost: 1 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 10: f1_0_main_Load -> f113_0_upAndDown_GT : arg1'=0, arg2'=0, [ arg1>0 && arg2<10 && arg2>0 ], cost: 1+arg2 11: f1_0_main_Load -> f113_0_upAndDown_GT : arg1'=0, arg2'=9, [ arg1>0 && 10==arg2 ], cost: -8+arg2 12: f1_0_main_Load -> f113_0_upAndDown_GT : arg1'=1, arg2'=1, [ arg1>0 && 0==arg2 ], cost: 2-arg2 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, [], cost: 1 Eliminated locations (on tree-shaped paths): Start location: __init 13: __init -> f113_0_upAndDown_GT : arg1'=0, arg2'=0, [ arg1P_6>0 && arg2P_6<10 && arg2P_6>0 ], cost: 2+arg2P_6 14: __init -> f113_0_upAndDown_GT : arg1'=0, arg2'=9, [ arg1P_6>0 && 10==arg2P_6 ], cost: -7+arg2P_6 15: __init -> f113_0_upAndDown_GT : arg1'=1, arg2'=1, [ arg1P_6>0 && 0==arg2P_6 ], cost: 3-arg2P_6 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 13: __init -> f113_0_upAndDown_GT : arg1'=0, arg2'=0, [ arg1P_6>0 && arg2P_6<10 && arg2P_6>0 ], cost: 2+arg2P_6 14: __init -> f113_0_upAndDown_GT : arg1'=0, arg2'=9, [ arg1P_6>0 && 10==arg2P_6 ], cost: -7+arg2P_6 15: __init -> f113_0_upAndDown_GT : arg1'=1, arg2'=1, [ arg1P_6>0 && 0==arg2P_6 ], cost: 3-arg2P_6 Computing asymptotic complexity for rule 13 Could not solve the limit problem. Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 14 Could not solve the limit problem. Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 15 Could not solve the limit problem. Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)