WORST_CASE(INF,?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1_0_main_Load -> f54_0_loop_LE : arg1'=arg1P_1, arg2'=arg2P_1, [ arg1>0 && arg2>-1 && arg2==arg1P_1 && arg2==arg2P_1 ], cost: 1 1: f54_0_loop_LE -> f54_0_loop_LE : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1>4 && arg2>0 && arg2>=arg1 && -1+arg1==arg1P_2 && -1+arg2==arg2P_2 ], cost: 1 2: f54_0_loop_LE -> f54_0_loop_LE : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2>0 && arg2>=arg1 && arg1<5 && -2-arg1+arg2<=2 && arg1>-1 && 2+arg1==arg1P_3 && -1+arg2==arg2P_3 ], cost: 1 3: f54_0_loop_LE -> f54_0_loop_LE : arg1'=arg1P_4, arg2'=arg2P_4, [ arg2>0 && arg2>=arg1 && arg1<5 && -2-arg1+arg2>2 && arg1>-1 && 1+arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 4: f54_0_loop_LE -> f54_0_loop_LE : arg1'=arg1P_5, arg2'=arg2P_5, [ arg21 && 1+arg2>=2*arg1 && arg2>0 && 1+arg1==arg1P_5 && 1+arg2==arg2P_5 ], cost: 1 5: f54_0_loop_LE -> f54_0_loop_LE : arg1'=arg1P_6, arg2'=arg2P_6, [ arg21 && 1+arg2<2*arg1 && arg2>0 && -1+arg1==arg1P_6 && 1+arg2==arg2P_6 ], cost: 1 6: __init -> f1_0_main_Load : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 6: __init -> f1_0_main_Load : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 Removed rules with unsatisfiable guard: Start location: __init 0: f1_0_main_Load -> f54_0_loop_LE : arg1'=arg1P_1, arg2'=arg2P_1, [ arg1>0 && arg2>-1 && arg2==arg1P_1 && arg2==arg2P_1 ], cost: 1 1: f54_0_loop_LE -> f54_0_loop_LE : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1>4 && arg2>0 && arg2>=arg1 && -1+arg1==arg1P_2 && -1+arg2==arg2P_2 ], cost: 1 2: f54_0_loop_LE -> f54_0_loop_LE : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2>0 && arg2>=arg1 && arg1<5 && -2-arg1+arg2<=2 && arg1>-1 && 2+arg1==arg1P_3 && -1+arg2==arg2P_3 ], cost: 1 3: f54_0_loop_LE -> f54_0_loop_LE : arg1'=arg1P_4, arg2'=arg2P_4, [ arg2>0 && arg2>=arg1 && arg1<5 && -2-arg1+arg2>2 && arg1>-1 && 1+arg1==arg1P_4 && arg2==arg2P_4 ], cost: 1 5: f54_0_loop_LE -> f54_0_loop_LE : arg1'=arg1P_6, arg2'=arg2P_6, [ arg21 && 1+arg2<2*arg1 && arg2>0 && -1+arg1==arg1P_6 && 1+arg2==arg2P_6 ], cost: 1 6: __init -> f1_0_main_Load : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1_0_main_Load -> f54_0_loop_LE : arg1'=arg2, [ arg1>0 && arg2>-1 ], cost: 1 1: f54_0_loop_LE -> f54_0_loop_LE : arg1'=-1+arg1, arg2'=-1+arg2, [ arg1>4 && arg2>0 && arg2>=arg1 ], cost: 1 2: f54_0_loop_LE -> f54_0_loop_LE : arg1'=2+arg1, arg2'=-1+arg2, [ arg2>0 && arg2>=arg1 && arg1<5 && -2-arg1+arg2<=2 && arg1>-1 ], cost: 1 3: f54_0_loop_LE -> f54_0_loop_LE : arg1'=1+arg1, [ arg1<5 && -2-arg1+arg2>2 && arg1>-1 ], cost: 1 5: f54_0_loop_LE -> f54_0_loop_LE : arg1'=-1+arg1, arg2'=1+arg2, [ arg21 && arg2>0 ], cost: 1 6: __init -> f1_0_main_Load : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f54_0_loop_LE -> f54_0_loop_LE : arg1'=-1+arg1, arg2'=-1+arg2, [ arg1>4 && arg2>0 && arg2>=arg1 ], cost: 1 2: f54_0_loop_LE -> f54_0_loop_LE : arg1'=2+arg1, arg2'=-1+arg2, [ arg2>0 && arg2>=arg1 && arg1<5 && -2-arg1+arg2<=2 && arg1>-1 ], cost: 1 3: f54_0_loop_LE -> f54_0_loop_LE : arg1'=1+arg1, [ arg1<5 && -2-arg1+arg2>2 && arg1>-1 ], cost: 1 5: f54_0_loop_LE -> f54_0_loop_LE : arg1'=-1+arg1, arg2'=1+arg2, [ arg21 && arg2>0 ], cost: 1 Accelerated rule 1 with metering function -4+arg1, yielding the new rule 7. Found no metering function for rule 2. Found no metering function for rule 3. Accelerated rule 5 with metering function meter (where 2*meter==arg1-arg2), yielding the new rule 8. During metering: Instantiating temporary variables by {meter==-5+arg1} During metering: Instantiating temporary variables by {meter==1} Nested simple loops 2 (outer loop) and 8 (inner loop) with metering function meter_5 (where 6*meter_5==-2-4*arg1+4*meter+3*arg2), resulting in the new rules: 9. Removing the simple loops: 1 2 5. Accelerated all simple loops using metering functions (where possible): Start location: __init 0: f1_0_main_Load -> f54_0_loop_LE : arg1'=arg2, [ arg1>0 && arg2>-1 ], cost: 1 3: f54_0_loop_LE -> f54_0_loop_LE : arg1'=1+arg1, [ arg1<5 && -2-arg1+arg2>2 && arg1>-1 ], cost: 1 7: f54_0_loop_LE -> f54_0_loop_LE : arg1'=4, arg2'=4-arg1+arg2, [ arg1>4 && arg2>0 && arg2>=arg1 ], cost: -4+arg1 8: f54_0_loop_LE -> f54_0_loop_LE : arg1'=arg1-meter, arg2'=meter+arg2, [ arg21 && arg2>0 && 2*meter==arg1-arg2 && meter>=1 ], cost: meter 9: f54_0_loop_LE -> f54_0_loop_LE : arg1'=-meter_5*meter+2*meter_5+arg1, arg2'=meter_5*meter-meter_5+arg2, [ arg2>=arg1 && arg1<5 && arg1>-1 && -1+arg2<2+arg1 && -1+arg2>0 && 2*meter==3+arg1-arg2 && meter>=1 && 6*meter_5==-2-4*arg1+4*meter+3*arg2 && meter_5>=1 ], cost: meter_5*meter+meter_5 6: __init -> f1_0_main_Load : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: __init 0: f1_0_main_Load -> f54_0_loop_LE : arg1'=arg2, [ arg1>0 && arg2>-1 ], cost: 1 10: f1_0_main_Load -> f54_0_loop_LE : arg1'=4, arg2'=4, [ arg1>0 && arg2>4 ], cost: -3+arg2 6: __init -> f1_0_main_Load : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 10: f1_0_main_Load -> f54_0_loop_LE : arg1'=4, arg2'=4, [ arg1>0 && arg2>4 ], cost: -3+arg2 6: __init -> f1_0_main_Load : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 Eliminated locations (on linear paths): Start location: __init 11: __init -> f54_0_loop_LE : arg1'=4, arg2'=4, [ arg1P_7>0 && arg2P_7>4 ], cost: -2+arg2P_7 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 11: __init -> f54_0_loop_LE : arg1'=4, arg2'=4, [ arg1P_7>0 && arg2P_7>4 ], cost: -2+arg2P_7 Computing asymptotic complexity for rule 11 Solved the limit problem by the following transformations: Created initial limit problem: arg1P_7 (+/+!), -4+arg2P_7 (+/+!), -2+arg2P_7 (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {arg1P_7==1,arg2P_7==n} resulting limit problem: [solved] Solution: arg1P_7 / 1 arg2P_7 / n Resulting cost -2+n has complexity: Unbounded Found new complexity Unbounded. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Unbounded Cpx degree: Unbounded Solved cost: -2+n Rule cost: -2+arg2P_7 Rule guard: [ arg1P_7>0 && arg2P_7>4 ] WORST_CASE(INF,?)