WORST_CASE(INF,?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1_0_main_ConstantStackPush -> f66_0_main_GE : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg1P_1<=arg1 && arg2>-1 && arg1>0 && arg1P_1>0 && 0==arg2P_1 && arg2==arg3P_1 ], cost: 1 1: f66_0_main_GE -> f66_0_main_GE : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg3>arg2 && arg3>-1 && arg1P_2<=arg1 && arg1>0 && arg1P_2>0 && 1+arg2==arg2P_2 && arg3==arg3P_2 ], cost: 1 2: __init -> f1_0_main_ConstantStackPush : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 2: __init -> f1_0_main_ConstantStackPush : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1_0_main_ConstantStackPush -> f66_0_main_GE : arg1'=arg1P_1, arg2'=0, arg3'=arg2, [ arg1P_1<=arg1 && arg2>-1 && arg1>0 && arg1P_1>0 ], cost: 1 1: f66_0_main_GE -> f66_0_main_GE : arg1'=arg1P_2, arg2'=1+arg2, [ arg3>arg2 && arg3>-1 && arg1P_2<=arg1 && arg1>0 && arg1P_2>0 ], cost: 1 2: __init -> f1_0_main_ConstantStackPush : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f66_0_main_GE -> f66_0_main_GE : arg1'=arg1P_2, arg2'=1+arg2, [ arg3>arg2 && arg3>-1 && arg1P_2<=arg1 && arg1>0 && arg1P_2>0 ], cost: 1 Accelerated rule 1 with metering function arg3-arg2, yielding the new rule 3. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: __init 0: f1_0_main_ConstantStackPush -> f66_0_main_GE : arg1'=arg1P_1, arg2'=0, arg3'=arg2, [ arg1P_1<=arg1 && arg2>-1 && arg1>0 && arg1P_1>0 ], cost: 1 3: f66_0_main_GE -> f66_0_main_GE : arg1'=arg1P_2, arg2'=arg3, [ arg3>arg2 && arg3>-1 && arg1P_2<=arg1 && arg1>0 && arg1P_2>0 ], cost: arg3-arg2 2: __init -> f1_0_main_ConstantStackPush : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: __init 0: f1_0_main_ConstantStackPush -> f66_0_main_GE : arg1'=arg1P_1, arg2'=0, arg3'=arg2, [ arg1P_1<=arg1 && arg2>-1 && arg1>0 && arg1P_1>0 ], cost: 1 4: f1_0_main_ConstantStackPush -> f66_0_main_GE : arg1'=arg1P_2, arg3'=arg2, [ arg1>0 && arg2>0 && arg1P_2>0 && arg1P_2<=arg1 ], cost: 1+arg2 2: __init -> f1_0_main_ConstantStackPush : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [], cost: 1 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 4: f1_0_main_ConstantStackPush -> f66_0_main_GE : arg1'=arg1P_2, arg3'=arg2, [ arg1>0 && arg2>0 && arg1P_2>0 && arg1P_2<=arg1 ], cost: 1+arg2 2: __init -> f1_0_main_ConstantStackPush : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [], cost: 1 Eliminated locations (on linear paths): Start location: __init 5: __init -> f66_0_main_GE : arg1'=arg1P_2, arg2'=arg2P_3, arg3'=arg2P_3, [ arg1P_3>0 && arg2P_3>0 && arg1P_2>0 && arg1P_2<=arg1P_3 ], cost: 2+arg2P_3 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 5: __init -> f66_0_main_GE : arg1'=arg1P_2, arg2'=arg2P_3, arg3'=arg2P_3, [ arg1P_3>0 && arg2P_3>0 && arg1P_2>0 && arg1P_2<=arg1P_3 ], cost: 2+arg2P_3 Computing asymptotic complexity for rule 5 Simplified the guard: 5: __init -> f66_0_main_GE : arg1'=arg1P_2, arg2'=arg2P_3, arg3'=arg2P_3, [ arg2P_3>0 && arg1P_2>0 && arg1P_2<=arg1P_3 ], cost: 2+arg2P_3 Solved the limit problem by the following transformations: Created initial limit problem: 1+arg1P_3-arg1P_2 (+/+!), arg1P_2 (+/+!), 2+arg2P_3 (+), arg2P_3 (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {arg1P_3==n,arg1P_2==1,arg2P_3==n} resulting limit problem: [solved] Solution: arg1P_3 / n arg1P_2 / 1 arg2P_3 / n Resulting cost 2+n has complexity: Unbounded Found new complexity Unbounded. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Unbounded Cpx degree: Unbounded Solved cost: 2+n Rule cost: 2+arg2P_3 Rule guard: [ arg2P_3>0 && arg1P_2>0 && arg1P_2<=arg1P_3 ] WORST_CASE(INF,?)