WORST_CASE(INF,?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1_0_main_Load -> f31_0_fib_NE : arg1'=arg1P_1, arg2'=arg2P_1, [ arg1>0 && arg2>-1 && arg2==arg1P_1 ], cost: 1 1: f31_0_fib_NE -> f31_0_fib_NE : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1>1 && -1+arg1 f142_0_fib_InvokeMethod : arg1'=arg1P_3, arg2'=arg2P_3, [ 2==arg1 && 2==arg1P_3 && 0==arg2P_3 ], cost: 1 3: f31_0_fib_NE -> f142_0_fib_InvokeMethod : arg1'=arg1P_4, arg2'=arg2P_4, [ arg1>1 && -1+arg1 f31_0_fib_NE : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1>1 && arg2 f142_0_fib_InvokeMethod : arg1'=arg1P_5, arg2'=arg2P_5, [ arg1>0 && arg1==arg1P_5 && -2+arg1==arg2P_5 ], cost: 1 6: __init -> f1_0_main_Load : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 6: __init -> f1_0_main_Load : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1_0_main_Load -> f31_0_fib_NE : arg1'=arg1P_1, arg2'=arg2P_1, [ arg1>0 && arg2>-1 && arg2==arg1P_1 ], cost: 1 1: f31_0_fib_NE -> f31_0_fib_NE : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1>1 && -1+arg1 f142_0_fib_InvokeMethod : arg1'=arg1P_3, arg2'=arg2P_3, [ 2==arg1 && 2==arg1P_3 && 0==arg2P_3 ], cost: 1 3: f31_0_fib_NE -> f142_0_fib_InvokeMethod : arg1'=arg1P_4, arg2'=arg2P_4, [ arg1>1 && -1+arg1 f31_0_fib_NE : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1>1 && arg2 f1_0_main_Load : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1_0_main_Load -> f31_0_fib_NE : arg1'=arg2, arg2'=arg2P_1, [ arg1>0 && arg2>-1 ], cost: 1 1: f31_0_fib_NE -> f31_0_fib_NE : arg1'=-1+arg1, arg2'=arg2P_2, [ arg1>1 ], cost: 1 2: f31_0_fib_NE -> f142_0_fib_InvokeMethod : arg1'=2, arg2'=0, [ 2==arg1 ], cost: 1 3: f31_0_fib_NE -> f142_0_fib_InvokeMethod : arg2'=-2+arg1, [ arg1>1 ], cost: 1 5: f142_0_fib_InvokeMethod -> f31_0_fib_NE : arg1'=arg2, arg2'=arg2P_6, [ arg1>1 && arg2 f1_0_main_Load : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f31_0_fib_NE -> f31_0_fib_NE : arg1'=-1+arg1, arg2'=arg2P_2, [ arg1>1 ], cost: 1 Accelerated rule 1 with metering function -1+arg1, yielding the new rule 7. Removing the simple loops: 1. Accelerated all simple loops using metering functions (where possible): Start location: __init 0: f1_0_main_Load -> f31_0_fib_NE : arg1'=arg2, arg2'=arg2P_1, [ arg1>0 && arg2>-1 ], cost: 1 2: f31_0_fib_NE -> f142_0_fib_InvokeMethod : arg1'=2, arg2'=0, [ 2==arg1 ], cost: 1 3: f31_0_fib_NE -> f142_0_fib_InvokeMethod : arg2'=-2+arg1, [ arg1>1 ], cost: 1 7: f31_0_fib_NE -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_2, [ arg1>1 ], cost: -1+arg1 5: f142_0_fib_InvokeMethod -> f31_0_fib_NE : arg1'=arg2, arg2'=arg2P_6, [ arg1>1 && arg2 f1_0_main_Load : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: __init 0: f1_0_main_Load -> f31_0_fib_NE : arg1'=arg2, arg2'=arg2P_1, [ arg1>0 && arg2>-1 ], cost: 1 8: f1_0_main_Load -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_2, [ arg1>0 && arg2>1 ], cost: arg2 2: f31_0_fib_NE -> f142_0_fib_InvokeMethod : arg1'=2, arg2'=0, [ 2==arg1 ], cost: 1 3: f31_0_fib_NE -> f142_0_fib_InvokeMethod : arg2'=-2+arg1, [ arg1>1 ], cost: 1 5: f142_0_fib_InvokeMethod -> f31_0_fib_NE : arg1'=arg2, arg2'=arg2P_6, [ arg1>1 && arg2 f31_0_fib_NE : arg1'=1, arg2'=arg2P_2, [ arg1>1 && arg21 ], cost: arg2 6: __init -> f1_0_main_Load : arg1'=arg1P_7, arg2'=arg2P_7, [], cost: 1 Eliminated locations (on tree-shaped paths): Start location: __init 12: f31_0_fib_NE -> f31_0_fib_NE : arg1'=0, arg2'=arg2P_6, [ 2==arg1 ], cost: 2 13: f31_0_fib_NE -> f31_0_fib_NE : arg1'=-2+arg1, arg2'=arg2P_6, [ arg1>1 ], cost: 2 14: f31_0_fib_NE -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_2, [ -2+arg1>1 ], cost: -1+arg1 10: __init -> f31_0_fib_NE : arg1'=arg2P_7, arg2'=arg2P_1, [ arg1P_7>0 && arg2P_7>-1 ], cost: 2 11: __init -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_2, [ arg1P_7>0 && arg2P_7>1 ], cost: 1+arg2P_7 Accelerating simple loops of location 1. Accelerating the following rules: 12: f31_0_fib_NE -> f31_0_fib_NE : arg1'=0, arg2'=arg2P_6, [ 2==arg1 ], cost: 2 13: f31_0_fib_NE -> f31_0_fib_NE : arg1'=-2+arg1, arg2'=arg2P_6, [ arg1>1 ], cost: 2 14: f31_0_fib_NE -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_2, [ -2+arg1>1 ], cost: -1+arg1 Accelerated rule 12 with metering function meter (where 2*meter==-1+arg1), yielding the new rule 15. Accelerated rule 13 with metering function meter_1 (where 2*meter_1==-1+arg1), yielding the new rule 16. Found no metering function for rule 14. Removing the simple loops: 12 13. Accelerated all simple loops using metering functions (where possible): Start location: __init 14: f31_0_fib_NE -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_2, [ -2+arg1>1 ], cost: -1+arg1 15: f31_0_fib_NE -> f31_0_fib_NE : arg1'=0, arg2'=arg2P_6, [ 2==arg1 && 2*meter==-1+arg1 && meter>=1 ], cost: 2*meter 16: f31_0_fib_NE -> f31_0_fib_NE : arg1'=-2*meter_1+arg1, arg2'=arg2P_6, [ arg1>1 && 2*meter_1==-1+arg1 && meter_1>=1 ], cost: 2*meter_1 10: __init -> f31_0_fib_NE : arg1'=arg2P_7, arg2'=arg2P_1, [ arg1P_7>0 && arg2P_7>-1 ], cost: 2 11: __init -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_2, [ arg1P_7>0 && arg2P_7>1 ], cost: 1+arg2P_7 Chained accelerated rules (with incoming rules): Start location: __init 10: __init -> f31_0_fib_NE : arg1'=arg2P_7, arg2'=arg2P_1, [ arg1P_7>0 && arg2P_7>-1 ], cost: 2 11: __init -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_2, [ arg1P_7>0 && arg2P_7>1 ], cost: 1+arg2P_7 17: __init -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_2, [ -2+arg2P_7>1 ], cost: 1+arg2P_7 18: __init -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_6, [ 1+2*meter_1>1 && meter_1>=1 ], cost: 2+2*meter_1 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 11: __init -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_2, [ arg1P_7>0 && arg2P_7>1 ], cost: 1+arg2P_7 17: __init -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_2, [ -2+arg2P_7>1 ], cost: 1+arg2P_7 18: __init -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_6, [ 1+2*meter_1>1 && meter_1>=1 ], cost: 2+2*meter_1 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 11: __init -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_2, [ arg1P_7>0 && arg2P_7>1 ], cost: 1+arg2P_7 17: __init -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_2, [ -2+arg2P_7>1 ], cost: 1+arg2P_7 18: __init -> f31_0_fib_NE : arg1'=1, arg2'=arg2P_6, [ 1+2*meter_1>1 && meter_1>=1 ], cost: 2+2*meter_1 Computing asymptotic complexity for rule 11 Solved the limit problem by the following transformations: Created initial limit problem: -1+arg2P_7 (+/+!), arg1P_7 (+/+!), 1+arg2P_7 (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {arg1P_7==1,arg2P_7==n} resulting limit problem: [solved] Solution: arg1P_7 / 1 arg2P_7 / n Resulting cost 1+n has complexity: Unbounded Found new complexity Unbounded. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Unbounded Cpx degree: Unbounded Solved cost: 1+n Rule cost: 1+arg2P_7 Rule guard: [ arg1P_7>0 && arg2P_7>1 ] WORST_CASE(INF,?)