WORST_CASE(INF,?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1_0_main_Load -> f151_0_main_LT : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2>-1 && arg1P_1>-1 && arg1>0 ], cost: 1 1: f151_0_main_LT -> f192_0_main_LT : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1>-1 && 1+arg1==arg1P_2 && 1==arg2P_2 ], cost: 1 2: f192_0_main_LT -> f192_0_main_LT : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2<=arg1 && arg1==arg1P_3 && 1+arg2==arg2P_3 ], cost: 1 3: f192_0_main_LT -> f151_0_main_LT : arg1'=arg1P_4, arg2'=arg2P_4, [ arg1>0 && arg2>arg1 && -2+arg1==arg1P_4 ], cost: 1 4: __init -> f1_0_main_Load : arg1'=arg1P_5, arg2'=arg2P_5, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 4: __init -> f1_0_main_Load : arg1'=arg1P_5, arg2'=arg2P_5, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1_0_main_Load -> f151_0_main_LT : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2>-1 && arg1P_1>-1 && arg1>0 ], cost: 1 1: f151_0_main_LT -> f192_0_main_LT : arg1'=1+arg1, arg2'=1, [ arg1>-1 ], cost: 1 2: f192_0_main_LT -> f192_0_main_LT : arg2'=1+arg2, [ arg2<=arg1 ], cost: 1 3: f192_0_main_LT -> f151_0_main_LT : arg1'=-2+arg1, arg2'=arg2P_4, [ arg1>0 && arg2>arg1 ], cost: 1 4: __init -> f1_0_main_Load : arg1'=arg1P_5, arg2'=arg2P_5, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 2. Accelerating the following rules: 2: f192_0_main_LT -> f192_0_main_LT : arg2'=1+arg2, [ arg2<=arg1 ], cost: 1 Accelerated rule 2 with metering function 1+arg1-arg2, yielding the new rule 5. Removing the simple loops: 2. Accelerated all simple loops using metering functions (where possible): Start location: __init 0: f1_0_main_Load -> f151_0_main_LT : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2>-1 && arg1P_1>-1 && arg1>0 ], cost: 1 1: f151_0_main_LT -> f192_0_main_LT : arg1'=1+arg1, arg2'=1, [ arg1>-1 ], cost: 1 3: f192_0_main_LT -> f151_0_main_LT : arg1'=-2+arg1, arg2'=arg2P_4, [ arg1>0 && arg2>arg1 ], cost: 1 5: f192_0_main_LT -> f192_0_main_LT : arg2'=1+arg1, [ arg2<=arg1 ], cost: 1+arg1-arg2 4: __init -> f1_0_main_Load : arg1'=arg1P_5, arg2'=arg2P_5, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: __init 0: f1_0_main_Load -> f151_0_main_LT : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2>-1 && arg1P_1>-1 && arg1>0 ], cost: 1 1: f151_0_main_LT -> f192_0_main_LT : arg1'=1+arg1, arg2'=1, [ arg1>-1 ], cost: 1 6: f151_0_main_LT -> f192_0_main_LT : arg1'=1+arg1, arg2'=2+arg1, [ arg1>-1 ], cost: 2+arg1 3: f192_0_main_LT -> f151_0_main_LT : arg1'=-2+arg1, arg2'=arg2P_4, [ arg1>0 && arg2>arg1 ], cost: 1 4: __init -> f1_0_main_Load : arg1'=arg1P_5, arg2'=arg2P_5, [], cost: 1 Eliminated locations (on linear paths): Start location: __init 1: f151_0_main_LT -> f192_0_main_LT : arg1'=1+arg1, arg2'=1, [ arg1>-1 ], cost: 1 6: f151_0_main_LT -> f192_0_main_LT : arg1'=1+arg1, arg2'=2+arg1, [ arg1>-1 ], cost: 2+arg1 3: f192_0_main_LT -> f151_0_main_LT : arg1'=-2+arg1, arg2'=arg2P_4, [ arg1>0 && arg2>arg1 ], cost: 1 7: __init -> f151_0_main_LT : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2P_5>-1 && arg1P_1>-1 && arg1P_5>0 ], cost: 2 Eliminated locations (on tree-shaped paths): Start location: __init 8: f151_0_main_LT -> f151_0_main_LT : arg1'=-1+arg1, arg2'=arg2P_4, [ arg1>-1 ], cost: 3+arg1 7: __init -> f151_0_main_LT : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2P_5>-1 && arg1P_1>-1 && arg1P_5>0 ], cost: 2 Accelerating simple loops of location 1. Accelerating the following rules: 8: f151_0_main_LT -> f151_0_main_LT : arg1'=-1+arg1, arg2'=arg2P_4, [ arg1>-1 ], cost: 3+arg1 Accelerated rule 8 with metering function 1+arg1, yielding the new rule 9. Removing the simple loops: 8. Accelerated all simple loops using metering functions (where possible): Start location: __init 9: f151_0_main_LT -> f151_0_main_LT : arg1'=-1, arg2'=arg2P_4, [ arg1>-1 ], cost: 7/2-1/2*(1+arg1)^2+7/2*arg1+(1+arg1)*arg1 7: __init -> f151_0_main_LT : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2P_5>-1 && arg1P_1>-1 && arg1P_5>0 ], cost: 2 Chained accelerated rules (with incoming rules): Start location: __init 7: __init -> f151_0_main_LT : arg1'=arg1P_1, arg2'=arg2P_1, [ arg2P_5>-1 && arg1P_1>-1 && arg1P_5>0 ], cost: 2 10: __init -> f151_0_main_LT : arg1'=-1, arg2'=arg2P_4, [ arg1P_1>-1 ], cost: 11/2+(1+arg1P_1)*arg1P_1-1/2*(1+arg1P_1)^2+7/2*arg1P_1 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 10: __init -> f151_0_main_LT : arg1'=-1, arg2'=arg2P_4, [ arg1P_1>-1 ], cost: 11/2+(1+arg1P_1)*arg1P_1-1/2*(1+arg1P_1)^2+7/2*arg1P_1 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 10: __init -> f151_0_main_LT : arg1'=-1, arg2'=arg2P_4, [ arg1P_1>-1 ], cost: 11/2+(1+arg1P_1)*arg1P_1-1/2*(1+arg1P_1)^2+7/2*arg1P_1 Computing asymptotic complexity for rule 10 Solved the limit problem by the following transformations: Created initial limit problem: 1+arg1P_1 (+/+!), 5+1/2*arg1P_1^2+7/2*arg1P_1 (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {arg1P_1==n} resulting limit problem: [solved] Solution: arg1P_1 / n Resulting cost 5+1/2*n^2+7/2*n has complexity: Unbounded Found new complexity Unbounded. Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Unbounded Cpx degree: Unbounded Solved cost: 5+1/2*n^2+7/2*n Rule cost: 11/2+(1+arg1P_1)*arg1P_1-1/2*(1+arg1P_1)^2+7/2*arg1P_1 Rule guard: [ arg1P_1>-1 ] WORST_CASE(INF,?)