WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1_0_main_Load -> f81_0_loop_EQ : arg1'=arg1P_1, arg2'=arg2P_1, [ arg1>0 && arg2>-1 && arg2==arg1P_1 ], cost: 1 1: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1<0 && arg1>-3 && 2+arg1==arg1P_2 ], cost: 1 2: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=arg1P_3, arg2'=arg2P_3, [ arg1>0 && arg1<3 && -2+arg1==arg1P_3 ], cost: 1 3: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=arg1P_4, arg2'=arg2P_4, [ arg1<-2 && arg1<-1 && arg1<0 && -2-arg1==arg1P_4 ], cost: 1 4: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=arg1P_5, arg2'=arg2P_5, [ arg1>2 && 2-arg1==arg1P_5 ], cost: 1 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1_0_main_Load -> f81_0_loop_EQ : arg1'=arg2, arg2'=arg2P_1, [ arg1>0 && arg2>-1 ], cost: 1 1: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=2+arg1, arg2'=arg2P_2, [ arg1<0 && arg1>-3 ], cost: 1 2: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=-2+arg1, arg2'=arg2P_3, [ arg1>0 && arg1<3 ], cost: 1 3: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=-2-arg1, arg2'=arg2P_4, [ arg1<-2 ], cost: 1 4: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=2-arg1, arg2'=arg2P_5, [ arg1>2 ], cost: 1 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, [], cost: 1 ### Simplification by acceleration and chaining ### Accelerating simple loops of location 1. Accelerating the following rules: 1: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=2+arg1, arg2'=arg2P_2, [ arg1<0 && arg1>-3 ], cost: 1 2: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=-2+arg1, arg2'=arg2P_3, [ arg1>0 && arg1<3 ], cost: 1 3: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=-2-arg1, arg2'=arg2P_4, [ arg1<-2 ], cost: 1 4: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=2-arg1, arg2'=arg2P_5, [ arg1>2 ], cost: 1 Accelerated rule 1 with metering function meter (where 2*meter==-arg1), yielding the new rule 6. Accelerated rule 2 with metering function meter_1 (where 2*meter_1==arg1), yielding the new rule 7. Found no metering function for rule 3. Found no metering function for rule 4. Nested simple loops 4 (outer loop) and 6 (inner loop) with metering function meter_2 (where 4*meter_2==-3+arg1-meter), resulting in the new rules: 8. Nested simple loops 3 (outer loop) and 7 (inner loop) with metering function meter_3 (where 4*meter_3==-3-meter_1-arg1), resulting in the new rules: 9. Removing the simple loops: 1 2 3 4. Accelerated all simple loops using metering functions (where possible): Start location: __init 0: f1_0_main_Load -> f81_0_loop_EQ : arg1'=arg2, arg2'=arg2P_1, [ arg1>0 && arg2>-1 ], cost: 1 6: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=arg1+2*meter, arg2'=arg2P_2, [ arg1<0 && arg1>-3 && 2*meter==-arg1 && meter>=1 ], cost: meter 7: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=-2*meter_1+arg1, arg2'=arg2P_3, [ arg1>0 && arg1<3 && 2*meter_1==arg1 && meter_1>=1 ], cost: meter_1 8: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=1+(-1)^(1+meter_2)+(-1)^(1+meter_2)*meter+(-1)^meter_2*arg1+meter, arg2'=arg2P_2, [ arg1>2 && 2-arg1>-3 && 2*meter==-2+arg1 && meter>=1 && 4*meter_2==-3+arg1-meter && meter_2>=1 ], cost: meter_2+meter_2*meter 9: f81_0_loop_EQ -> f81_0_loop_EQ : arg1'=-1-meter_1+meter_1*(-1)^meter_3+arg1*(-1)^meter_3+(-1)^meter_3, arg2'=arg2P_3, [ arg1<-2 && -2-arg1<3 && 2*meter_1==-2-arg1 && meter_1>=1 && 4*meter_3==-3-meter_1-arg1 && meter_3>=1 ], cost: meter_1*meter_3+meter_3 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, [], cost: 1 Chained accelerated rules (with incoming rules): Start location: __init 0: f1_0_main_Load -> f81_0_loop_EQ : arg1'=arg2, arg2'=arg2P_1, [ arg1>0 && arg2>-1 ], cost: 1 10: f1_0_main_Load -> f81_0_loop_EQ : arg1'=-2*meter_1+arg2, arg2'=arg2P_3, [ arg1>0 && arg2>0 && arg2<3 && 2*meter_1==arg2 && meter_1>=1 ], cost: 1+meter_1 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, [], cost: 1 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 10: f1_0_main_Load -> f81_0_loop_EQ : arg1'=-2*meter_1+arg2, arg2'=arg2P_3, [ arg1>0 && arg2>0 && arg2<3 && 2*meter_1==arg2 && meter_1>=1 ], cost: 1+meter_1 5: __init -> f1_0_main_Load : arg1'=arg1P_6, arg2'=arg2P_6, [], cost: 1 Eliminated locations (on linear paths): Start location: __init 11: __init -> f81_0_loop_EQ : arg1'=-2*meter_1+arg2P_6, arg2'=arg2P_3, [ arg1P_6>0 && arg2P_6>0 && arg2P_6<3 && 2*meter_1==arg2P_6 && meter_1>=1 ], cost: 2+meter_1 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 11: __init -> f81_0_loop_EQ : arg1'=-2*meter_1+arg2P_6, arg2'=arg2P_3, [ arg1P_6>0 && arg2P_6>0 && arg2P_6<3 && 2*meter_1==arg2P_6 && meter_1>=1 ], cost: 2+meter_1 Computing asymptotic complexity for rule 11 Could not solve the limit problem. Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)