WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l3 0: l0 -> l1 : __const_1000^0'=__const_1000^post_1, __const_110^0'=__const_110^post_1, __const_3000^0'=__const_3000^post_1, __const_4000^0'=__const_4000^post_1, x^0'=x^post_1, y^0'=y^post_1, [ 1+y^0<=__const_4000^0 && x^post_1==__const_1000^0+x^0 && 1+__const_110^0<=x^post_1 && __const_1000^0==__const_1000^post_1 && __const_110^0==__const_110^post_1 && __const_3000^0==__const_3000^post_1 && __const_4000^0==__const_4000^post_1 && y^0==y^post_1 ], cost: 1 1: l1 -> l0 : __const_1000^0'=__const_1000^post_2, __const_110^0'=__const_110^post_2, __const_3000^0'=__const_3000^post_2, __const_4000^0'=__const_4000^post_2, x^0'=x^post_2, y^0'=y^post_2, [ __const_1000^0==__const_1000^post_2 && __const_110^0==__const_110^post_2 && __const_3000^0==__const_3000^post_2 && __const_4000^0==__const_4000^post_2 && x^0==x^post_2 && y^0==y^post_2 ], cost: 1 2: l2 -> l0 : __const_1000^0'=__const_1000^post_3, __const_110^0'=__const_110^post_3, __const_3000^0'=__const_3000^post_3, __const_4000^0'=__const_4000^post_3, x^0'=x^post_3, y^0'=y^post_3, [ y^post_3==__const_3000^0 && __const_1000^0==__const_1000^post_3 && __const_110^0==__const_110^post_3 && __const_3000^0==__const_3000^post_3 && __const_4000^0==__const_4000^post_3 && x^0==x^post_3 ], cost: 1 3: l3 -> l2 : __const_1000^0'=__const_1000^post_4, __const_110^0'=__const_110^post_4, __const_3000^0'=__const_3000^post_4, __const_4000^0'=__const_4000^post_4, x^0'=x^post_4, y^0'=y^post_4, [ __const_1000^0==__const_1000^post_4 && __const_110^0==__const_110^post_4 && __const_3000^0==__const_3000^post_4 && __const_4000^0==__const_4000^post_4 && x^0==x^post_4 && y^0==y^post_4 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 3: l3 -> l2 : __const_1000^0'=__const_1000^post_4, __const_110^0'=__const_110^post_4, __const_3000^0'=__const_3000^post_4, __const_4000^0'=__const_4000^post_4, x^0'=x^post_4, y^0'=y^post_4, [ __const_1000^0==__const_1000^post_4 && __const_110^0==__const_110^post_4 && __const_3000^0==__const_3000^post_4 && __const_4000^0==__const_4000^post_4 && x^0==x^post_4 && y^0==y^post_4 ], cost: 1 Simplified all rules, resulting in: Start location: l3 0: l0 -> l1 : x^0'=__const_1000^0+x^0, [ 1+y^0<=__const_4000^0 && 1+__const_110^0<=__const_1000^0+x^0 ], cost: 1 1: l1 -> l0 : [], cost: 1 2: l2 -> l0 : y^0'=__const_3000^0, [], cost: 1 3: l3 -> l2 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: l3 5: l0 -> l0 : x^0'=__const_1000^0+x^0, [ 1+y^0<=__const_4000^0 && 1+__const_110^0<=__const_1000^0+x^0 ], cost: 2 4: l3 -> l0 : y^0'=__const_3000^0, [], cost: 2 Accelerating simple loops of location 0. Accelerating the following rules: 5: l0 -> l0 : x^0'=__const_1000^0+x^0, [ 1+y^0<=__const_4000^0 && 1+__const_110^0<=__const_1000^0+x^0 ], cost: 2 Found no metering function for rule 5. Removing the simple loops:. Accelerated all simple loops using metering functions (where possible): Start location: l3 5: l0 -> l0 : x^0'=__const_1000^0+x^0, [ 1+y^0<=__const_4000^0 && 1+__const_110^0<=__const_1000^0+x^0 ], cost: 2 4: l3 -> l0 : y^0'=__const_3000^0, [], cost: 2 Chained accelerated rules (with incoming rules): Start location: l3 4: l3 -> l0 : y^0'=__const_3000^0, [], cost: 2 6: l3 -> l0 : x^0'=__const_1000^0+x^0, y^0'=__const_3000^0, [ 1+__const_3000^0<=__const_4000^0 && 1+__const_110^0<=__const_1000^0+x^0 ], cost: 4 Removed unreachable locations (and leaf rules with constant cost): Start location: l3 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l3 Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [ __const_1000^0==__const_1000^post_4 && __const_110^0==__const_110^post_4 && __const_3000^0==__const_3000^post_4 && __const_4000^0==__const_4000^post_4 && x^0==x^post_4 && y^0==y^post_4 ] WORST_CASE(Omega(1),?)