WORST_CASE(Omega(n^1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l6 0: l0 -> l1 : __const_20^0'=__const_20^post_1, i^0'=i^post_1, [ __const_20^0==__const_20^post_1 && i^0==i^post_1 ], cost: 1 1: l2 -> l0 : __const_20^0'=__const_20^post_2, i^0'=i^post_2, [ __const_20^0<=i^0 && __const_20^0==__const_20^post_2 && i^0==i^post_2 ], cost: 1 2: l2 -> l3 : __const_20^0'=__const_20^post_3, i^0'=i^post_3, [ 1+i^0<=__const_20^0 && i^post_3==1+i^0 && __const_20^0==__const_20^post_3 ], cost: 1 5: l3 -> l2 : __const_20^0'=__const_20^post_6, i^0'=i^post_6, [ __const_20^0==__const_20^post_6 && i^0==i^post_6 ], cost: 1 3: l4 -> l0 : __const_20^0'=__const_20^post_4, i^0'=i^post_4, [ i^0<=0 && __const_20^0==__const_20^post_4 && i^0==i^post_4 ], cost: 1 4: l4 -> l3 : __const_20^0'=__const_20^post_5, i^0'=i^post_5, [ 1<=i^0 && __const_20^0==__const_20^post_5 && i^0==i^post_5 ], cost: 1 6: l5 -> l4 : __const_20^0'=__const_20^post_7, i^0'=i^post_7, [ i^1_1==0 && i^post_7==i^post_7 && __const_20^0==__const_20^post_7 ], cost: 1 7: l6 -> l5 : __const_20^0'=__const_20^post_8, i^0'=i^post_8, [ __const_20^0==__const_20^post_8 && i^0==i^post_8 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 7: l6 -> l5 : __const_20^0'=__const_20^post_8, i^0'=i^post_8, [ __const_20^0==__const_20^post_8 && i^0==i^post_8 ], cost: 1 Removed unreachable and leaf rules: Start location: l6 2: l2 -> l3 : __const_20^0'=__const_20^post_3, i^0'=i^post_3, [ 1+i^0<=__const_20^0 && i^post_3==1+i^0 && __const_20^0==__const_20^post_3 ], cost: 1 5: l3 -> l2 : __const_20^0'=__const_20^post_6, i^0'=i^post_6, [ __const_20^0==__const_20^post_6 && i^0==i^post_6 ], cost: 1 4: l4 -> l3 : __const_20^0'=__const_20^post_5, i^0'=i^post_5, [ 1<=i^0 && __const_20^0==__const_20^post_5 && i^0==i^post_5 ], cost: 1 6: l5 -> l4 : __const_20^0'=__const_20^post_7, i^0'=i^post_7, [ i^1_1==0 && i^post_7==i^post_7 && __const_20^0==__const_20^post_7 ], cost: 1 7: l6 -> l5 : __const_20^0'=__const_20^post_8, i^0'=i^post_8, [ __const_20^0==__const_20^post_8 && i^0==i^post_8 ], cost: 1 Simplified all rules, resulting in: Start location: l6 2: l2 -> l3 : i^0'=1+i^0, [ 1+i^0<=__const_20^0 ], cost: 1 5: l3 -> l2 : [], cost: 1 4: l4 -> l3 : [ 1<=i^0 ], cost: 1 6: l5 -> l4 : i^0'=i^post_7, [], cost: 1 7: l6 -> l5 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: l6 10: l3 -> l3 : i^0'=1+i^0, [ 1+i^0<=__const_20^0 ], cost: 2 9: l6 -> l3 : i^0'=i^post_7, [ 1<=i^post_7 ], cost: 3 Accelerating simple loops of location 3. Accelerating the following rules: 10: l3 -> l3 : i^0'=1+i^0, [ 1+i^0<=__const_20^0 ], cost: 2 Accelerated rule 10 with metering function __const_20^0-i^0, yielding the new rule 11. Removing the simple loops: 10. Accelerated all simple loops using metering functions (where possible): Start location: l6 11: l3 -> l3 : i^0'=__const_20^0, [ 1+i^0<=__const_20^0 ], cost: 2*__const_20^0-2*i^0 9: l6 -> l3 : i^0'=i^post_7, [ 1<=i^post_7 ], cost: 3 Chained accelerated rules (with incoming rules): Start location: l6 9: l6 -> l3 : i^0'=i^post_7, [ 1<=i^post_7 ], cost: 3 12: l6 -> l3 : i^0'=__const_20^0, [ 1<=i^post_7 && 1+i^post_7<=__const_20^0 ], cost: 3-2*i^post_7+2*__const_20^0 Removed unreachable locations (and leaf rules with constant cost): Start location: l6 12: l6 -> l3 : i^0'=__const_20^0, [ 1<=i^post_7 && 1+i^post_7<=__const_20^0 ], cost: 3-2*i^post_7+2*__const_20^0 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l6 12: l6 -> l3 : i^0'=__const_20^0, [ 1<=i^post_7 && 1+i^post_7<=__const_20^0 ], cost: 3-2*i^post_7+2*__const_20^0 Computing asymptotic complexity for rule 12 Solved the limit problem by the following transformations: Created initial limit problem: i^post_7 (+/+!), -i^post_7+__const_20^0 (+/+!), 3-2*i^post_7+2*__const_20^0 (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {i^post_7==n,__const_20^0==2*n} resulting limit problem: [solved] Solution: i^post_7 / n __const_20^0 / 2*n Resulting cost 3+2*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 3+2*n Rule cost: 3-2*i^post_7+2*__const_20^0 Rule guard: [ 1<=i^post_7 && 1+i^post_7<=__const_20^0 ] WORST_CASE(Omega(n^1),?)