WORST_CASE(Omega(n^1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l9 0: l0 -> l1 : Result_4^0'=Result_4^post_1, x_5^0'=x_5^post_1, [ Result_4^0==Result_4^post_1 && x_5^0==x_5^post_1 ], cost: 1 1: l1 -> l3 : Result_4^0'=Result_4^post_2, x_5^0'=x_5^post_2, [ x_5^post_2==-1+x_5^0 && Result_4^0==Result_4^post_2 ], cost: 1 6: l1 -> l6 : Result_4^0'=Result_4^post_7, x_5^0'=x_5^post_7, [ x_5^post_7==-1+x_5^0 && Result_4^0==Result_4^post_7 ], cost: 1 10: l1 -> l8 : Result_4^0'=Result_4^post_11, x_5^0'=x_5^post_11, [ x_5^1_1==-1+x_5^0 && x_5^1_1<=13 && 13<=x_5^1_1 && x_5^post_11==x_5^post_11 && -x_5^post_11<=0 && Result_4^0==Result_4^post_11 ], cost: 1 12: l1 -> l5 : Result_4^0'=Result_4^post_13, x_5^0'=x_5^post_13, [ x_5^1_2==-1+x_5^0 && x_5^1_2<=13 && 13<=x_5^1_2 && x_5^post_13==x_5^post_13 && 0<=-1-x_5^post_13 && Result_4^post_13==Result_4^post_13 ], cost: 1 2: l3 -> l4 : Result_4^0'=Result_4^post_3, x_5^0'=x_5^post_3, [ 1+x_5^0<=13 && Result_4^0==Result_4^post_3 && x_5^0==x_5^post_3 ], cost: 1 3: l3 -> l4 : Result_4^0'=Result_4^post_4, x_5^0'=x_5^post_4, [ 14<=x_5^0 && Result_4^0==Result_4^post_4 && x_5^0==x_5^post_4 ], cost: 1 4: l4 -> l2 : Result_4^0'=Result_4^post_5, x_5^0'=x_5^post_5, [ -x_5^0<=0 && Result_4^0==Result_4^post_5 && x_5^0==x_5^post_5 ], cost: 1 5: l2 -> l1 : Result_4^0'=Result_4^post_6, x_5^0'=x_5^post_6, [ Result_4^0==Result_4^post_6 && x_5^0==x_5^post_6 ], cost: 1 7: l6 -> l7 : Result_4^0'=Result_4^post_8, x_5^0'=x_5^post_8, [ 1+x_5^0<=13 && Result_4^0==Result_4^post_8 && x_5^0==x_5^post_8 ], cost: 1 8: l6 -> l7 : Result_4^0'=Result_4^post_9, x_5^0'=x_5^post_9, [ 14<=x_5^0 && Result_4^0==Result_4^post_9 && x_5^0==x_5^post_9 ], cost: 1 9: l7 -> l5 : Result_4^0'=Result_4^post_10, x_5^0'=x_5^post_10, [ 0<=-1-x_5^0 && Result_4^post_10==Result_4^post_10 && x_5^0==x_5^post_10 ], cost: 1 11: l8 -> l1 : Result_4^0'=Result_4^post_12, x_5^0'=x_5^post_12, [ Result_4^0==Result_4^post_12 && x_5^0==x_5^post_12 ], cost: 1 13: l9 -> l0 : Result_4^0'=Result_4^post_14, x_5^0'=x_5^post_14, [ Result_4^0==Result_4^post_14 && x_5^0==x_5^post_14 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 13: l9 -> l0 : Result_4^0'=Result_4^post_14, x_5^0'=x_5^post_14, [ Result_4^0==Result_4^post_14 && x_5^0==x_5^post_14 ], cost: 1 Removed unreachable and leaf rules: Start location: l9 0: l0 -> l1 : Result_4^0'=Result_4^post_1, x_5^0'=x_5^post_1, [ Result_4^0==Result_4^post_1 && x_5^0==x_5^post_1 ], cost: 1 1: l1 -> l3 : Result_4^0'=Result_4^post_2, x_5^0'=x_5^post_2, [ x_5^post_2==-1+x_5^0 && Result_4^0==Result_4^post_2 ], cost: 1 10: l1 -> l8 : Result_4^0'=Result_4^post_11, x_5^0'=x_5^post_11, [ x_5^1_1==-1+x_5^0 && x_5^1_1<=13 && 13<=x_5^1_1 && x_5^post_11==x_5^post_11 && -x_5^post_11<=0 && Result_4^0==Result_4^post_11 ], cost: 1 2: l3 -> l4 : Result_4^0'=Result_4^post_3, x_5^0'=x_5^post_3, [ 1+x_5^0<=13 && Result_4^0==Result_4^post_3 && x_5^0==x_5^post_3 ], cost: 1 3: l3 -> l4 : Result_4^0'=Result_4^post_4, x_5^0'=x_5^post_4, [ 14<=x_5^0 && Result_4^0==Result_4^post_4 && x_5^0==x_5^post_4 ], cost: 1 4: l4 -> l2 : Result_4^0'=Result_4^post_5, x_5^0'=x_5^post_5, [ -x_5^0<=0 && Result_4^0==Result_4^post_5 && x_5^0==x_5^post_5 ], cost: 1 5: l2 -> l1 : Result_4^0'=Result_4^post_6, x_5^0'=x_5^post_6, [ Result_4^0==Result_4^post_6 && x_5^0==x_5^post_6 ], cost: 1 11: l8 -> l1 : Result_4^0'=Result_4^post_12, x_5^0'=x_5^post_12, [ Result_4^0==Result_4^post_12 && x_5^0==x_5^post_12 ], cost: 1 13: l9 -> l0 : Result_4^0'=Result_4^post_14, x_5^0'=x_5^post_14, [ Result_4^0==Result_4^post_14 && x_5^0==x_5^post_14 ], cost: 1 Simplified all rules, resulting in: Start location: l9 0: l0 -> l1 : [], cost: 1 1: l1 -> l3 : x_5^0'=-1+x_5^0, [], cost: 1 10: l1 -> l8 : x_5^0'=x_5^post_11, [ -14+x_5^0==0 && -x_5^post_11<=0 ], cost: 1 2: l3 -> l4 : [ 1+x_5^0<=13 ], cost: 1 3: l3 -> l4 : [ 14<=x_5^0 ], cost: 1 4: l4 -> l2 : [ -x_5^0<=0 ], cost: 1 5: l2 -> l1 : [], cost: 1 11: l8 -> l1 : [], cost: 1 13: l9 -> l0 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: l9 1: l1 -> l3 : x_5^0'=-1+x_5^0, [], cost: 1 15: l1 -> l1 : x_5^0'=x_5^post_11, [ -14+x_5^0==0 && -x_5^post_11<=0 ], cost: 2 2: l3 -> l4 : [ 1+x_5^0<=13 ], cost: 1 3: l3 -> l4 : [ 14<=x_5^0 ], cost: 1 16: l4 -> l1 : [ -x_5^0<=0 ], cost: 2 14: l9 -> l1 : [], cost: 2 Accelerating simple loops of location 1. Accelerating the following rules: 15: l1 -> l1 : x_5^0'=x_5^post_11, [ -14+x_5^0==0 && -x_5^post_11<=0 ], cost: 2 During metering: Instantiating temporary variables by {x_5^post_11==0} Accelerated rule 15 with metering function meter (where 14*meter==-13+x_5^0), yielding the new rule 17. Removing the simple loops: 15. Accelerated all simple loops using metering functions (where possible): Start location: l9 1: l1 -> l3 : x_5^0'=-1+x_5^0, [], cost: 1 17: l1 -> l1 : x_5^0'=0, [ -14+x_5^0==0 && 14*meter==-13+x_5^0 && meter>=1 ], cost: 2*meter 2: l3 -> l4 : [ 1+x_5^0<=13 ], cost: 1 3: l3 -> l4 : [ 14<=x_5^0 ], cost: 1 16: l4 -> l1 : [ -x_5^0<=0 ], cost: 2 14: l9 -> l1 : [], cost: 2 Chained accelerated rules (with incoming rules): Start location: l9 1: l1 -> l3 : x_5^0'=-1+x_5^0, [], cost: 1 2: l3 -> l4 : [ 1+x_5^0<=13 ], cost: 1 3: l3 -> l4 : [ 14<=x_5^0 ], cost: 1 16: l4 -> l1 : [ -x_5^0<=0 ], cost: 2 14: l9 -> l1 : [], cost: 2 Eliminated locations (on tree-shaped paths): Start location: l9 18: l1 -> l4 : x_5^0'=-1+x_5^0, [ x_5^0<=13 ], cost: 2 19: l1 -> l4 : x_5^0'=-1+x_5^0, [ 14<=-1+x_5^0 ], cost: 2 16: l4 -> l1 : [ -x_5^0<=0 ], cost: 2 14: l9 -> l1 : [], cost: 2 Eliminated locations (on tree-shaped paths): Start location: l9 20: l1 -> l1 : x_5^0'=-1+x_5^0, [ x_5^0<=13 && 1-x_5^0<=0 ], cost: 4 21: l1 -> l1 : x_5^0'=-1+x_5^0, [ 14<=-1+x_5^0 ], cost: 4 14: l9 -> l1 : [], cost: 2 Accelerating simple loops of location 1. Accelerating the following rules: 20: l1 -> l1 : x_5^0'=-1+x_5^0, [ x_5^0<=13 && 1-x_5^0<=0 ], cost: 4 21: l1 -> l1 : x_5^0'=-1+x_5^0, [ 14<=-1+x_5^0 ], cost: 4 Accelerated rule 20 with metering function x_5^0, yielding the new rule 22. Accelerated rule 21 with metering function -14+x_5^0, yielding the new rule 23. Removing the simple loops: 20 21. Accelerated all simple loops using metering functions (where possible): Start location: l9 22: l1 -> l1 : x_5^0'=0, [ x_5^0<=13 && 1-x_5^0<=0 ], cost: 4*x_5^0 23: l1 -> l1 : x_5^0'=14, [ 14<=-1+x_5^0 ], cost: -56+4*x_5^0 14: l9 -> l1 : [], cost: 2 Chained accelerated rules (with incoming rules): Start location: l9 14: l9 -> l1 : [], cost: 2 24: l9 -> l1 : x_5^0'=0, [ x_5^0<=13 && 1-x_5^0<=0 ], cost: 2+4*x_5^0 25: l9 -> l1 : x_5^0'=14, [ 14<=-1+x_5^0 ], cost: -54+4*x_5^0 Removed unreachable locations (and leaf rules with constant cost): Start location: l9 24: l9 -> l1 : x_5^0'=0, [ x_5^0<=13 && 1-x_5^0<=0 ], cost: 2+4*x_5^0 25: l9 -> l1 : x_5^0'=14, [ 14<=-1+x_5^0 ], cost: -54+4*x_5^0 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l9 24: l9 -> l1 : x_5^0'=0, [ x_5^0<=13 && 1-x_5^0<=0 ], cost: 2+4*x_5^0 25: l9 -> l1 : x_5^0'=14, [ 14<=-1+x_5^0 ], cost: -54+4*x_5^0 Computing asymptotic complexity for rule 24 Could not solve the limit problem. Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 25 Solved the limit problem by the following transformations: Created initial limit problem: -14+x_5^0 (+/+!), -54+4*x_5^0 (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {x_5^0==n} resulting limit problem: [solved] Solution: x_5^0 / n Resulting cost -54+4*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: -54+4*n Rule cost: -54+4*x_5^0 Rule guard: [ 14<=-1+x_5^0 ] WORST_CASE(Omega(n^1),?)