WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l4 0: l0 -> l1 : Result_4^0'=Result_4^post_1, x_5^0'=x_5^post_1, y_6^0'=y_6^post_1, [ Result_4^0==Result_4^post_1 && x_5^0==x_5^post_1 && y_6^0==y_6^post_1 ], cost: 1 1: l1 -> l2 : Result_4^0'=Result_4^post_2, x_5^0'=x_5^post_2, y_6^0'=y_6^post_2, [ x_5^post_2==y_6^0+x_5^0 && 0<=-1-x_5^post_2 && Result_4^post_2==Result_4^post_2 && y_6^0==y_6^post_2 ], cost: 1 2: l1 -> l3 : Result_4^0'=Result_4^post_3, x_5^0'=x_5^post_3, y_6^0'=y_6^post_3, [ x_5^post_3==y_6^0+x_5^0 && -x_5^post_3<=0 && Result_4^0==Result_4^post_3 && y_6^0==y_6^post_3 ], cost: 1 3: l3 -> l1 : Result_4^0'=Result_4^post_4, x_5^0'=x_5^post_4, y_6^0'=y_6^post_4, [ Result_4^0==Result_4^post_4 && x_5^0==x_5^post_4 && y_6^0==y_6^post_4 ], cost: 1 4: l4 -> l0 : Result_4^0'=Result_4^post_5, x_5^0'=x_5^post_5, y_6^0'=y_6^post_5, [ Result_4^0==Result_4^post_5 && x_5^0==x_5^post_5 && y_6^0==y_6^post_5 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 4: l4 -> l0 : Result_4^0'=Result_4^post_5, x_5^0'=x_5^post_5, y_6^0'=y_6^post_5, [ Result_4^0==Result_4^post_5 && x_5^0==x_5^post_5 && y_6^0==y_6^post_5 ], cost: 1 Removed unreachable and leaf rules: Start location: l4 0: l0 -> l1 : Result_4^0'=Result_4^post_1, x_5^0'=x_5^post_1, y_6^0'=y_6^post_1, [ Result_4^0==Result_4^post_1 && x_5^0==x_5^post_1 && y_6^0==y_6^post_1 ], cost: 1 2: l1 -> l3 : Result_4^0'=Result_4^post_3, x_5^0'=x_5^post_3, y_6^0'=y_6^post_3, [ x_5^post_3==y_6^0+x_5^0 && -x_5^post_3<=0 && Result_4^0==Result_4^post_3 && y_6^0==y_6^post_3 ], cost: 1 3: l3 -> l1 : Result_4^0'=Result_4^post_4, x_5^0'=x_5^post_4, y_6^0'=y_6^post_4, [ Result_4^0==Result_4^post_4 && x_5^0==x_5^post_4 && y_6^0==y_6^post_4 ], cost: 1 4: l4 -> l0 : Result_4^0'=Result_4^post_5, x_5^0'=x_5^post_5, y_6^0'=y_6^post_5, [ Result_4^0==Result_4^post_5 && x_5^0==x_5^post_5 && y_6^0==y_6^post_5 ], cost: 1 Simplified all rules, resulting in: Start location: l4 0: l0 -> l1 : [], cost: 1 2: l1 -> l3 : x_5^0'=y_6^0+x_5^0, [ -y_6^0-x_5^0<=0 ], cost: 1 3: l3 -> l1 : [], cost: 1 4: l4 -> l0 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: l4 6: l1 -> l1 : x_5^0'=y_6^0+x_5^0, [ -y_6^0-x_5^0<=0 ], cost: 2 5: l4 -> l1 : [], cost: 2 Accelerating simple loops of location 1. Accelerating the following rules: 6: l1 -> l1 : x_5^0'=y_6^0+x_5^0, [ -y_6^0-x_5^0<=0 ], cost: 2 Found no metering function for rule 6. Removing the simple loops:. Accelerated all simple loops using metering functions (where possible): Start location: l4 6: l1 -> l1 : x_5^0'=y_6^0+x_5^0, [ -y_6^0-x_5^0<=0 ], cost: 2 5: l4 -> l1 : [], cost: 2 Chained accelerated rules (with incoming rules): Start location: l4 5: l4 -> l1 : [], cost: 2 7: l4 -> l1 : x_5^0'=y_6^0+x_5^0, [ -y_6^0-x_5^0<=0 ], cost: 4 Removed unreachable locations (and leaf rules with constant cost): Start location: l4 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l4 Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [ Result_4^0==Result_4^post_5 && x_5^0==x_5^post_5 && y_6^0==y_6^post_5 ] WORST_CASE(Omega(1),?)