WORST_CASE(Omega(n^1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l4 0: l0 -> l1 : Result_4^0'=Result_4^post_1, __cil_tmp4_8^0'=__cil_tmp4_8^post_1, __const_1000^0'=__const_1000^post_1, __const_101^0'=__const_101^post_1, __const_9^0'=__const_9^post_1, __retres3_7^0'=__retres3_7^post_1, i_5^0'=i_5^post_1, x_6^0'=x_6^post_1, [ 1-x_6^0+__const_9^0<=0 && __retres3_7^post_1==0 && __cil_tmp4_8^post_1==__retres3_7^post_1 && Result_4^post_1==__cil_tmp4_8^post_1 && __const_1000^0==__const_1000^post_1 && __const_101^0==__const_101^post_1 && __const_9^0==__const_9^post_1 && i_5^0==i_5^post_1 && x_6^0==x_6^post_1 ], cost: 1 1: l0 -> l1 : Result_4^0'=Result_4^post_2, __cil_tmp4_8^0'=__cil_tmp4_8^post_2, __const_1000^0'=__const_1000^post_2, __const_101^0'=__const_101^post_2, __const_9^0'=__const_9^post_2, __retres3_7^0'=__retres3_7^post_2, i_5^0'=i_5^post_2, x_6^0'=x_6^post_2, [ 0<=-x_6^0+__const_9^0 && 1+i_5^0-__const_101^0<=0 && __retres3_7^post_2==0 && __cil_tmp4_8^post_2==__retres3_7^post_2 && Result_4^post_2==__cil_tmp4_8^post_2 && __const_1000^0==__const_1000^post_2 && __const_101^0==__const_101^post_2 && __const_9^0==__const_9^post_2 && i_5^0==i_5^post_2 && x_6^0==x_6^post_2 ], cost: 1 2: l0 -> l2 : Result_4^0'=Result_4^post_3, __cil_tmp4_8^0'=__cil_tmp4_8^post_3, __const_1000^0'=__const_1000^post_3, __const_101^0'=__const_101^post_3, __const_9^0'=__const_9^post_3, __retres3_7^0'=__retres3_7^post_3, i_5^0'=i_5^post_3, x_6^0'=x_6^post_3, [ 0<=-x_6^0+__const_9^0 && 0<=i_5^0-__const_101^0 && i_5^post_3==-1+i_5^0 && Result_4^0==Result_4^post_3 && __cil_tmp4_8^0==__cil_tmp4_8^post_3 && __const_1000^0==__const_1000^post_3 && __const_101^0==__const_101^post_3 && __const_9^0==__const_9^post_3 && __retres3_7^0==__retres3_7^post_3 && x_6^0==x_6^post_3 ], cost: 1 3: l2 -> l0 : Result_4^0'=Result_4^post_4, __cil_tmp4_8^0'=__cil_tmp4_8^post_4, __const_1000^0'=__const_1000^post_4, __const_101^0'=__const_101^post_4, __const_9^0'=__const_9^post_4, __retres3_7^0'=__retres3_7^post_4, i_5^0'=i_5^post_4, x_6^0'=x_6^post_4, [ Result_4^0==Result_4^post_4 && __cil_tmp4_8^0==__cil_tmp4_8^post_4 && __const_1000^0==__const_1000^post_4 && __const_101^0==__const_101^post_4 && __const_9^0==__const_9^post_4 && __retres3_7^0==__retres3_7^post_4 && i_5^0==i_5^post_4 && x_6^0==x_6^post_4 ], cost: 1 4: l3 -> l0 : Result_4^0'=Result_4^post_5, __cil_tmp4_8^0'=__cil_tmp4_8^post_5, __const_1000^0'=__const_1000^post_5, __const_101^0'=__const_101^post_5, __const_9^0'=__const_9^post_5, __retres3_7^0'=__retres3_7^post_5, i_5^0'=i_5^post_5, x_6^0'=x_6^post_5, [ i_5^post_5==__const_1000^0 && Result_4^0==Result_4^post_5 && __cil_tmp4_8^0==__cil_tmp4_8^post_5 && __const_1000^0==__const_1000^post_5 && __const_101^0==__const_101^post_5 && __const_9^0==__const_9^post_5 && __retres3_7^0==__retres3_7^post_5 && x_6^0==x_6^post_5 ], cost: 1 5: l4 -> l3 : Result_4^0'=Result_4^post_6, __cil_tmp4_8^0'=__cil_tmp4_8^post_6, __const_1000^0'=__const_1000^post_6, __const_101^0'=__const_101^post_6, __const_9^0'=__const_9^post_6, __retres3_7^0'=__retres3_7^post_6, i_5^0'=i_5^post_6, x_6^0'=x_6^post_6, [ Result_4^0==Result_4^post_6 && __cil_tmp4_8^0==__cil_tmp4_8^post_6 && __const_1000^0==__const_1000^post_6 && __const_101^0==__const_101^post_6 && __const_9^0==__const_9^post_6 && __retres3_7^0==__retres3_7^post_6 && i_5^0==i_5^post_6 && x_6^0==x_6^post_6 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 5: l4 -> l3 : Result_4^0'=Result_4^post_6, __cil_tmp4_8^0'=__cil_tmp4_8^post_6, __const_1000^0'=__const_1000^post_6, __const_101^0'=__const_101^post_6, __const_9^0'=__const_9^post_6, __retres3_7^0'=__retres3_7^post_6, i_5^0'=i_5^post_6, x_6^0'=x_6^post_6, [ Result_4^0==Result_4^post_6 && __cil_tmp4_8^0==__cil_tmp4_8^post_6 && __const_1000^0==__const_1000^post_6 && __const_101^0==__const_101^post_6 && __const_9^0==__const_9^post_6 && __retres3_7^0==__retres3_7^post_6 && i_5^0==i_5^post_6 && x_6^0==x_6^post_6 ], cost: 1 Removed unreachable and leaf rules: Start location: l4 2: l0 -> l2 : Result_4^0'=Result_4^post_3, __cil_tmp4_8^0'=__cil_tmp4_8^post_3, __const_1000^0'=__const_1000^post_3, __const_101^0'=__const_101^post_3, __const_9^0'=__const_9^post_3, __retres3_7^0'=__retres3_7^post_3, i_5^0'=i_5^post_3, x_6^0'=x_6^post_3, [ 0<=-x_6^0+__const_9^0 && 0<=i_5^0-__const_101^0 && i_5^post_3==-1+i_5^0 && Result_4^0==Result_4^post_3 && __cil_tmp4_8^0==__cil_tmp4_8^post_3 && __const_1000^0==__const_1000^post_3 && __const_101^0==__const_101^post_3 && __const_9^0==__const_9^post_3 && __retres3_7^0==__retres3_7^post_3 && x_6^0==x_6^post_3 ], cost: 1 3: l2 -> l0 : Result_4^0'=Result_4^post_4, __cil_tmp4_8^0'=__cil_tmp4_8^post_4, __const_1000^0'=__const_1000^post_4, __const_101^0'=__const_101^post_4, __const_9^0'=__const_9^post_4, __retres3_7^0'=__retres3_7^post_4, i_5^0'=i_5^post_4, x_6^0'=x_6^post_4, [ Result_4^0==Result_4^post_4 && __cil_tmp4_8^0==__cil_tmp4_8^post_4 && __const_1000^0==__const_1000^post_4 && __const_101^0==__const_101^post_4 && __const_9^0==__const_9^post_4 && __retres3_7^0==__retres3_7^post_4 && i_5^0==i_5^post_4 && x_6^0==x_6^post_4 ], cost: 1 4: l3 -> l0 : Result_4^0'=Result_4^post_5, __cil_tmp4_8^0'=__cil_tmp4_8^post_5, __const_1000^0'=__const_1000^post_5, __const_101^0'=__const_101^post_5, __const_9^0'=__const_9^post_5, __retres3_7^0'=__retres3_7^post_5, i_5^0'=i_5^post_5, x_6^0'=x_6^post_5, [ i_5^post_5==__const_1000^0 && Result_4^0==Result_4^post_5 && __cil_tmp4_8^0==__cil_tmp4_8^post_5 && __const_1000^0==__const_1000^post_5 && __const_101^0==__const_101^post_5 && __const_9^0==__const_9^post_5 && __retres3_7^0==__retres3_7^post_5 && x_6^0==x_6^post_5 ], cost: 1 5: l4 -> l3 : Result_4^0'=Result_4^post_6, __cil_tmp4_8^0'=__cil_tmp4_8^post_6, __const_1000^0'=__const_1000^post_6, __const_101^0'=__const_101^post_6, __const_9^0'=__const_9^post_6, __retres3_7^0'=__retres3_7^post_6, i_5^0'=i_5^post_6, x_6^0'=x_6^post_6, [ Result_4^0==Result_4^post_6 && __cil_tmp4_8^0==__cil_tmp4_8^post_6 && __const_1000^0==__const_1000^post_6 && __const_101^0==__const_101^post_6 && __const_9^0==__const_9^post_6 && __retres3_7^0==__retres3_7^post_6 && i_5^0==i_5^post_6 && x_6^0==x_6^post_6 ], cost: 1 Simplified all rules, resulting in: Start location: l4 2: l0 -> l2 : i_5^0'=-1+i_5^0, [ 0<=-x_6^0+__const_9^0 && 0<=i_5^0-__const_101^0 ], cost: 1 3: l2 -> l0 : [], cost: 1 4: l3 -> l0 : i_5^0'=__const_1000^0, [], cost: 1 5: l4 -> l3 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: l4 7: l0 -> l0 : i_5^0'=-1+i_5^0, [ 0<=-x_6^0+__const_9^0 && 0<=i_5^0-__const_101^0 ], cost: 2 6: l4 -> l0 : i_5^0'=__const_1000^0, [], cost: 2 Accelerating simple loops of location 0. Accelerating the following rules: 7: l0 -> l0 : i_5^0'=-1+i_5^0, [ 0<=-x_6^0+__const_9^0 && 0<=i_5^0-__const_101^0 ], cost: 2 Accelerated rule 7 with metering function 1+i_5^0-__const_101^0, yielding the new rule 8. Removing the simple loops: 7. Accelerated all simple loops using metering functions (where possible): Start location: l4 8: l0 -> l0 : i_5^0'=-1+__const_101^0, [ 0<=-x_6^0+__const_9^0 && 0<=i_5^0-__const_101^0 ], cost: 2+2*i_5^0-2*__const_101^0 6: l4 -> l0 : i_5^0'=__const_1000^0, [], cost: 2 Chained accelerated rules (with incoming rules): Start location: l4 6: l4 -> l0 : i_5^0'=__const_1000^0, [], cost: 2 9: l4 -> l0 : i_5^0'=-1+__const_101^0, [ 0<=-x_6^0+__const_9^0 && 0<=__const_1000^0-__const_101^0 ], cost: 4+2*__const_1000^0-2*__const_101^0 Removed unreachable locations (and leaf rules with constant cost): Start location: l4 9: l4 -> l0 : i_5^0'=-1+__const_101^0, [ 0<=-x_6^0+__const_9^0 && 0<=__const_1000^0-__const_101^0 ], cost: 4+2*__const_1000^0-2*__const_101^0 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l4 9: l4 -> l0 : i_5^0'=-1+__const_101^0, [ 0<=-x_6^0+__const_9^0 && 0<=__const_1000^0-__const_101^0 ], cost: 4+2*__const_1000^0-2*__const_101^0 Computing asymptotic complexity for rule 9 Solved the limit problem by the following transformations: Created initial limit problem: 1+__const_1000^0-__const_101^0 (+/+!), 4+2*__const_1000^0-2*__const_101^0 (+), 1-x_6^0+__const_9^0 (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {__const_1000^0==0,__const_101^0==-n,x_6^0==-n,__const_9^0==0} resulting limit problem: [solved] Solution: __const_1000^0 / 0 __const_101^0 / -n x_6^0 / -n __const_9^0 / 0 Resulting cost 4+2*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 4+2*n Rule cost: 4+2*__const_1000^0-2*__const_101^0 Rule guard: [ 0<=-x_6^0+__const_9^0 && 0<=__const_1000^0-__const_101^0 ] WORST_CASE(Omega(n^1),?)