WORST_CASE(Omega(n^1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l5 0: l0 -> l2 : Result_4^0'=Result_4^post_1, __disjvr_0^0'=__disjvr_0^post_1, k_7^0'=k_7^post_1, w_8^0'=w_8^post_1, x_5^0'=x_5^post_1, y_6^0'=y_6^post_1, [ 0<=-2-x_5^0 && x_5^post_1==1+x_5^0 && y_6^post_1==1+y_6^0 && Result_4^0==Result_4^post_1 && __disjvr_0^0==__disjvr_0^post_1 && k_7^0==k_7^post_1 && w_8^0==w_8^post_1 ], cost: 1 3: l0 -> l3 : Result_4^0'=Result_4^post_4, __disjvr_0^0'=__disjvr_0^post_4, k_7^0'=k_7^post_4, w_8^0'=w_8^post_4, x_5^0'=x_5^post_4, y_6^0'=y_6^post_4, [ -1-x_5^0<=0 && Result_4^post_4==Result_4^post_4 && __disjvr_0^0==__disjvr_0^post_4 && k_7^0==k_7^post_4 && w_8^0==w_8^post_4 && x_5^0==x_5^post_4 && y_6^0==y_6^post_4 ], cost: 1 1: l2 -> l1 : Result_4^0'=Result_4^post_2, __disjvr_0^0'=__disjvr_0^post_2, k_7^0'=k_7^post_2, w_8^0'=w_8^post_2, x_5^0'=x_5^post_2, y_6^0'=y_6^post_2, [ __disjvr_0^post_2==__disjvr_0^0 && Result_4^0==Result_4^post_2 && __disjvr_0^0==__disjvr_0^post_2 && k_7^0==k_7^post_2 && w_8^0==w_8^post_2 && x_5^0==x_5^post_2 && y_6^0==y_6^post_2 ], cost: 1 2: l1 -> l0 : Result_4^0'=Result_4^post_3, __disjvr_0^0'=__disjvr_0^post_3, k_7^0'=k_7^post_3, w_8^0'=w_8^post_3, x_5^0'=x_5^post_3, y_6^0'=y_6^post_3, [ Result_4^0==Result_4^post_3 && __disjvr_0^0==__disjvr_0^post_3 && k_7^0==k_7^post_3 && w_8^0==w_8^post_3 && x_5^0==x_5^post_3 && y_6^0==y_6^post_3 ], cost: 1 4: l4 -> l0 : Result_4^0'=Result_4^post_5, __disjvr_0^0'=__disjvr_0^post_5, k_7^0'=k_7^post_5, w_8^0'=w_8^post_5, x_5^0'=x_5^post_5, y_6^0'=y_6^post_5, [ 0<=-2+k_7^0 && 0<=-2+w_8^0 && Result_4^0==Result_4^post_5 && __disjvr_0^0==__disjvr_0^post_5 && k_7^0==k_7^post_5 && w_8^0==w_8^post_5 && x_5^0==x_5^post_5 && y_6^0==y_6^post_5 ], cost: 1 5: l4 -> l3 : Result_4^0'=Result_4^post_6, __disjvr_0^0'=__disjvr_0^post_6, k_7^0'=k_7^post_6, w_8^0'=w_8^post_6, x_5^0'=x_5^post_6, y_6^0'=y_6^post_6, [ -1+k_7^0<=0 && Result_4^post_6==Result_4^post_6 && __disjvr_0^0==__disjvr_0^post_6 && k_7^0==k_7^post_6 && w_8^0==w_8^post_6 && x_5^0==x_5^post_6 && y_6^0==y_6^post_6 ], cost: 1 6: l5 -> l4 : Result_4^0'=Result_4^post_7, __disjvr_0^0'=__disjvr_0^post_7, k_7^0'=k_7^post_7, w_8^0'=w_8^post_7, x_5^0'=x_5^post_7, y_6^0'=y_6^post_7, [ Result_4^0==Result_4^post_7 && __disjvr_0^0==__disjvr_0^post_7 && k_7^0==k_7^post_7 && w_8^0==w_8^post_7 && x_5^0==x_5^post_7 && y_6^0==y_6^post_7 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 6: l5 -> l4 : Result_4^0'=Result_4^post_7, __disjvr_0^0'=__disjvr_0^post_7, k_7^0'=k_7^post_7, w_8^0'=w_8^post_7, x_5^0'=x_5^post_7, y_6^0'=y_6^post_7, [ Result_4^0==Result_4^post_7 && __disjvr_0^0==__disjvr_0^post_7 && k_7^0==k_7^post_7 && w_8^0==w_8^post_7 && x_5^0==x_5^post_7 && y_6^0==y_6^post_7 ], cost: 1 Removed unreachable and leaf rules: Start location: l5 0: l0 -> l2 : Result_4^0'=Result_4^post_1, __disjvr_0^0'=__disjvr_0^post_1, k_7^0'=k_7^post_1, w_8^0'=w_8^post_1, x_5^0'=x_5^post_1, y_6^0'=y_6^post_1, [ 0<=-2-x_5^0 && x_5^post_1==1+x_5^0 && y_6^post_1==1+y_6^0 && Result_4^0==Result_4^post_1 && __disjvr_0^0==__disjvr_0^post_1 && k_7^0==k_7^post_1 && w_8^0==w_8^post_1 ], cost: 1 1: l2 -> l1 : Result_4^0'=Result_4^post_2, __disjvr_0^0'=__disjvr_0^post_2, k_7^0'=k_7^post_2, w_8^0'=w_8^post_2, x_5^0'=x_5^post_2, y_6^0'=y_6^post_2, [ __disjvr_0^post_2==__disjvr_0^0 && Result_4^0==Result_4^post_2 && __disjvr_0^0==__disjvr_0^post_2 && k_7^0==k_7^post_2 && w_8^0==w_8^post_2 && x_5^0==x_5^post_2 && y_6^0==y_6^post_2 ], cost: 1 2: l1 -> l0 : Result_4^0'=Result_4^post_3, __disjvr_0^0'=__disjvr_0^post_3, k_7^0'=k_7^post_3, w_8^0'=w_8^post_3, x_5^0'=x_5^post_3, y_6^0'=y_6^post_3, [ Result_4^0==Result_4^post_3 && __disjvr_0^0==__disjvr_0^post_3 && k_7^0==k_7^post_3 && w_8^0==w_8^post_3 && x_5^0==x_5^post_3 && y_6^0==y_6^post_3 ], cost: 1 4: l4 -> l0 : Result_4^0'=Result_4^post_5, __disjvr_0^0'=__disjvr_0^post_5, k_7^0'=k_7^post_5, w_8^0'=w_8^post_5, x_5^0'=x_5^post_5, y_6^0'=y_6^post_5, [ 0<=-2+k_7^0 && 0<=-2+w_8^0 && Result_4^0==Result_4^post_5 && __disjvr_0^0==__disjvr_0^post_5 && k_7^0==k_7^post_5 && w_8^0==w_8^post_5 && x_5^0==x_5^post_5 && y_6^0==y_6^post_5 ], cost: 1 6: l5 -> l4 : Result_4^0'=Result_4^post_7, __disjvr_0^0'=__disjvr_0^post_7, k_7^0'=k_7^post_7, w_8^0'=w_8^post_7, x_5^0'=x_5^post_7, y_6^0'=y_6^post_7, [ Result_4^0==Result_4^post_7 && __disjvr_0^0==__disjvr_0^post_7 && k_7^0==k_7^post_7 && w_8^0==w_8^post_7 && x_5^0==x_5^post_7 && y_6^0==y_6^post_7 ], cost: 1 Simplified all rules, resulting in: Start location: l5 0: l0 -> l2 : x_5^0'=1+x_5^0, y_6^0'=1+y_6^0, [ 0<=-2-x_5^0 ], cost: 1 1: l2 -> l1 : [], cost: 1 2: l1 -> l0 : [], cost: 1 4: l4 -> l0 : [ 0<=-2+k_7^0 && 0<=-2+w_8^0 ], cost: 1 6: l5 -> l4 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: l5 9: l0 -> l0 : x_5^0'=1+x_5^0, y_6^0'=1+y_6^0, [ 0<=-2-x_5^0 ], cost: 3 7: l5 -> l0 : [ 0<=-2+k_7^0 && 0<=-2+w_8^0 ], cost: 2 Accelerating simple loops of location 0. Accelerating the following rules: 9: l0 -> l0 : x_5^0'=1+x_5^0, y_6^0'=1+y_6^0, [ 0<=-2-x_5^0 ], cost: 3 Accelerated rule 9 with metering function -1-x_5^0, yielding the new rule 10. Removing the simple loops: 9. Accelerated all simple loops using metering functions (where possible): Start location: l5 10: l0 -> l0 : x_5^0'=-1, y_6^0'=-1+y_6^0-x_5^0, [ 0<=-2-x_5^0 ], cost: -3-3*x_5^0 7: l5 -> l0 : [ 0<=-2+k_7^0 && 0<=-2+w_8^0 ], cost: 2 Chained accelerated rules (with incoming rules): Start location: l5 7: l5 -> l0 : [ 0<=-2+k_7^0 && 0<=-2+w_8^0 ], cost: 2 11: l5 -> l0 : x_5^0'=-1, y_6^0'=-1+y_6^0-x_5^0, [ 0<=-2+k_7^0 && 0<=-2+w_8^0 && 0<=-2-x_5^0 ], cost: -1-3*x_5^0 Removed unreachable locations (and leaf rules with constant cost): Start location: l5 11: l5 -> l0 : x_5^0'=-1, y_6^0'=-1+y_6^0-x_5^0, [ 0<=-2+k_7^0 && 0<=-2+w_8^0 && 0<=-2-x_5^0 ], cost: -1-3*x_5^0 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l5 11: l5 -> l0 : x_5^0'=-1, y_6^0'=-1+y_6^0-x_5^0, [ 0<=-2+k_7^0 && 0<=-2+w_8^0 && 0<=-2-x_5^0 ], cost: -1-3*x_5^0 Computing asymptotic complexity for rule 11 Solved the limit problem by the following transformations: Created initial limit problem: -1-x_5^0 (+/+!), -1+w_8^0 (+/+!), -1+k_7^0 (+/+!), -1-3*x_5^0 (+) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {k_7^0==n,w_8^0==n,x_5^0==-n} resulting limit problem: [solved] Solution: k_7^0 / n w_8^0 / n x_5^0 / -n Resulting cost -1+3*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: -1+3*n Rule cost: -1-3*x_5^0 Rule guard: [ 0<=-2+k_7^0 && 0<=-2+w_8^0 && 0<=-2-x_5^0 ] WORST_CASE(Omega(n^1),?)