WORST_CASE(Omega(n^1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l4 0: l0 -> l1 : __const_20^0'=__const_20^post_1, i^0'=i^post_1, j^0'=j^post_1, [ __const_20^0<=j^0 && __const_20^0==__const_20^post_1 && i^0==i^post_1 && j^0==j^post_1 ], cost: 1 1: l0 -> l2 : __const_20^0'=__const_20^post_2, i^0'=i^post_2, j^0'=j^post_2, [ 1+j^0<=__const_20^0 && __const_20^0==__const_20^post_2 && i^0==i^post_2 && j^0==j^post_2 ], cost: 1 2: l2 -> l0 : __const_20^0'=__const_20^post_3, i^0'=i^post_3, j^0'=j^post_3, [ j^post_3==2+j^0 && i^post_3==2+j^post_3 && __const_20^0==__const_20^post_3 ], cost: 1 3: l3 -> l2 : __const_20^0'=__const_20^post_4, i^0'=i^post_4, j^0'=j^post_4, [ j^post_4==0 && __const_20^0==__const_20^post_4 && i^0==i^post_4 ], cost: 1 4: l4 -> l3 : __const_20^0'=__const_20^post_5, i^0'=i^post_5, j^0'=j^post_5, [ __const_20^0==__const_20^post_5 && i^0==i^post_5 && j^0==j^post_5 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 4: l4 -> l3 : __const_20^0'=__const_20^post_5, i^0'=i^post_5, j^0'=j^post_5, [ __const_20^0==__const_20^post_5 && i^0==i^post_5 && j^0==j^post_5 ], cost: 1 Removed unreachable and leaf rules: Start location: l4 1: l0 -> l2 : __const_20^0'=__const_20^post_2, i^0'=i^post_2, j^0'=j^post_2, [ 1+j^0<=__const_20^0 && __const_20^0==__const_20^post_2 && i^0==i^post_2 && j^0==j^post_2 ], cost: 1 2: l2 -> l0 : __const_20^0'=__const_20^post_3, i^0'=i^post_3, j^0'=j^post_3, [ j^post_3==2+j^0 && i^post_3==2+j^post_3 && __const_20^0==__const_20^post_3 ], cost: 1 3: l3 -> l2 : __const_20^0'=__const_20^post_4, i^0'=i^post_4, j^0'=j^post_4, [ j^post_4==0 && __const_20^0==__const_20^post_4 && i^0==i^post_4 ], cost: 1 4: l4 -> l3 : __const_20^0'=__const_20^post_5, i^0'=i^post_5, j^0'=j^post_5, [ __const_20^0==__const_20^post_5 && i^0==i^post_5 && j^0==j^post_5 ], cost: 1 Simplified all rules, resulting in: Start location: l4 1: l0 -> l2 : [ 1+j^0<=__const_20^0 ], cost: 1 2: l2 -> l0 : i^0'=4+j^0, j^0'=2+j^0, [], cost: 1 3: l3 -> l2 : j^0'=0, [], cost: 1 4: l4 -> l3 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: l4 6: l2 -> l2 : i^0'=4+j^0, j^0'=2+j^0, [ 3+j^0<=__const_20^0 ], cost: 2 5: l4 -> l2 : j^0'=0, [], cost: 2 Accelerating simple loops of location 2. Accelerating the following rules: 6: l2 -> l2 : i^0'=4+j^0, j^0'=2+j^0, [ 3+j^0<=__const_20^0 ], cost: 2 Accelerated rule 6 with metering function meter (where 2*meter==-2-j^0+__const_20^0), yielding the new rule 7. Removing the simple loops: 6. Accelerated all simple loops using metering functions (where possible): Start location: l4 7: l2 -> l2 : i^0'=2+j^0+2*meter, j^0'=j^0+2*meter, [ 3+j^0<=__const_20^0 && 2*meter==-2-j^0+__const_20^0 && meter>=1 ], cost: 2*meter 5: l4 -> l2 : j^0'=0, [], cost: 2 Chained accelerated rules (with incoming rules): Start location: l4 5: l4 -> l2 : j^0'=0, [], cost: 2 8: l4 -> l2 : i^0'=2+2*meter, j^0'=2*meter, [ 3<=__const_20^0 && 2*meter==-2+__const_20^0 && meter>=1 ], cost: 2+2*meter Removed unreachable locations (and leaf rules with constant cost): Start location: l4 8: l4 -> l2 : i^0'=2+2*meter, j^0'=2*meter, [ 3<=__const_20^0 && 2*meter==-2+__const_20^0 && meter>=1 ], cost: 2+2*meter ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l4 8: l4 -> l2 : i^0'=2+2*meter, j^0'=2*meter, [ 3<=__const_20^0 && 2*meter==-2+__const_20^0 && meter>=1 ], cost: 2+2*meter Computing asymptotic complexity for rule 8 Solved the limit problem by the following transformations: Created initial limit problem: -1-2*meter+__const_20^0 (+/+!), -2+__const_20^0 (+/+!), 2+2*meter (+), 3+2*meter-__const_20^0 (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {meter==n,__const_20^0==2+2*n} resulting limit problem: [solved] Solution: meter / n __const_20^0 / 2+2*n Resulting cost 2+2*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 2+2*n Rule cost: 2+2*meter Rule guard: [ 3<=__const_20^0 && 2*meter==-2+__const_20^0 ] WORST_CASE(Omega(n^1),?)