WORST_CASE(Omega(n^1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l7 0: l0 -> l1 : c^0'=c^post_1, ox^0'=ox^post_1, x^0'=x^post_1, y^0'=y^post_1, [ 1+x^0<=ox^0 && c^0==c^post_1 && ox^0==ox^post_1 && x^0==x^post_1 && y^0==y^post_1 ], cost: 1 1: l0 -> l2 : c^0'=c^post_2, ox^0'=ox^post_2, x^0'=x^post_2, y^0'=y^post_2, [ ox^0<=x^0 && c^0==c^post_2 && ox^0==ox^post_2 && x^0==x^post_2 && y^0==y^post_2 ], cost: 1 8: l1 -> l5 : c^0'=c^post_9, ox^0'=ox^post_9, x^0'=x^post_9, y^0'=y^post_9, [ 1<=x^0 && 1<=y^0 && c^0==c^post_9 && ox^0==ox^post_9 && x^0==x^post_9 && y^0==y^post_9 ], cost: 1 2: l3 -> l1 : c^0'=c^post_3, ox^0'=ox^post_3, x^0'=x^post_3, y^0'=y^post_3, [ c^0<=0 && c^0==c^post_3 && ox^0==ox^post_3 && x^0==x^post_3 && y^0==y^post_3 ], cost: 1 3: l3 -> l1 : c^0'=c^post_4, ox^0'=ox^post_4, x^0'=x^post_4, y^0'=y^post_4, [ ox^post_4==x^0 && c^post_4==1 && x^0==x^post_4 && y^0==y^post_4 ], cost: 1 4: l4 -> l3 : c^0'=c^post_5, ox^0'=ox^post_5, x^0'=x^post_5, y^0'=y^post_5, [ c^0<=0 && c^0==c^post_5 && ox^0==ox^post_5 && x^0==x^post_5 && y^0==y^post_5 ], cost: 1 5: l4 -> l0 : c^0'=c^post_6, ox^0'=ox^post_6, x^0'=x^post_6, y^0'=y^post_6, [ 1<=c^0 && c^0==c^post_6 && ox^0==ox^post_6 && x^0==x^post_6 && y^0==y^post_6 ], cost: 1 6: l5 -> l4 : c^0'=c^post_7, ox^0'=ox^post_7, x^0'=x^post_7, y^0'=y^post_7, [ y^post_7==-1+y^0 && c^0==c^post_7 && ox^0==ox^post_7 && x^0==x^post_7 ], cost: 1 7: l5 -> l4 : c^0'=c^post_8, ox^0'=ox^post_8, x^0'=x^post_8, y^0'=y^post_8, [ x^post_8==-1+x^0 && c^0==c^post_8 && ox^0==ox^post_8 && y^0==y^post_8 ], cost: 1 9: l6 -> l1 : c^0'=c^post_10, ox^0'=ox^post_10, x^0'=x^post_10, y^0'=y^post_10, [ c^0<=0 && c^0==c^post_10 && ox^0==ox^post_10 && x^0==x^post_10 && y^0==y^post_10 ], cost: 1 10: l7 -> l6 : c^0'=c^post_11, ox^0'=ox^post_11, x^0'=x^post_11, y^0'=y^post_11, [ c^0==c^post_11 && ox^0==ox^post_11 && x^0==x^post_11 && y^0==y^post_11 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 10: l7 -> l6 : c^0'=c^post_11, ox^0'=ox^post_11, x^0'=x^post_11, y^0'=y^post_11, [ c^0==c^post_11 && ox^0==ox^post_11 && x^0==x^post_11 && y^0==y^post_11 ], cost: 1 Removed unreachable and leaf rules: Start location: l7 0: l0 -> l1 : c^0'=c^post_1, ox^0'=ox^post_1, x^0'=x^post_1, y^0'=y^post_1, [ 1+x^0<=ox^0 && c^0==c^post_1 && ox^0==ox^post_1 && x^0==x^post_1 && y^0==y^post_1 ], cost: 1 8: l1 -> l5 : c^0'=c^post_9, ox^0'=ox^post_9, x^0'=x^post_9, y^0'=y^post_9, [ 1<=x^0 && 1<=y^0 && c^0==c^post_9 && ox^0==ox^post_9 && x^0==x^post_9 && y^0==y^post_9 ], cost: 1 2: l3 -> l1 : c^0'=c^post_3, ox^0'=ox^post_3, x^0'=x^post_3, y^0'=y^post_3, [ c^0<=0 && c^0==c^post_3 && ox^0==ox^post_3 && x^0==x^post_3 && y^0==y^post_3 ], cost: 1 3: l3 -> l1 : c^0'=c^post_4, ox^0'=ox^post_4, x^0'=x^post_4, y^0'=y^post_4, [ ox^post_4==x^0 && c^post_4==1 && x^0==x^post_4 && y^0==y^post_4 ], cost: 1 4: l4 -> l3 : c^0'=c^post_5, ox^0'=ox^post_5, x^0'=x^post_5, y^0'=y^post_5, [ c^0<=0 && c^0==c^post_5 && ox^0==ox^post_5 && x^0==x^post_5 && y^0==y^post_5 ], cost: 1 5: l4 -> l0 : c^0'=c^post_6, ox^0'=ox^post_6, x^0'=x^post_6, y^0'=y^post_6, [ 1<=c^0 && c^0==c^post_6 && ox^0==ox^post_6 && x^0==x^post_6 && y^0==y^post_6 ], cost: 1 6: l5 -> l4 : c^0'=c^post_7, ox^0'=ox^post_7, x^0'=x^post_7, y^0'=y^post_7, [ y^post_7==-1+y^0 && c^0==c^post_7 && ox^0==ox^post_7 && x^0==x^post_7 ], cost: 1 7: l5 -> l4 : c^0'=c^post_8, ox^0'=ox^post_8, x^0'=x^post_8, y^0'=y^post_8, [ x^post_8==-1+x^0 && c^0==c^post_8 && ox^0==ox^post_8 && y^0==y^post_8 ], cost: 1 9: l6 -> l1 : c^0'=c^post_10, ox^0'=ox^post_10, x^0'=x^post_10, y^0'=y^post_10, [ c^0<=0 && c^0==c^post_10 && ox^0==ox^post_10 && x^0==x^post_10 && y^0==y^post_10 ], cost: 1 10: l7 -> l6 : c^0'=c^post_11, ox^0'=ox^post_11, x^0'=x^post_11, y^0'=y^post_11, [ c^0==c^post_11 && ox^0==ox^post_11 && x^0==x^post_11 && y^0==y^post_11 ], cost: 1 Simplified all rules, resulting in: Start location: l7 0: l0 -> l1 : [ 1+x^0<=ox^0 ], cost: 1 8: l1 -> l5 : [ 1<=x^0 && 1<=y^0 ], cost: 1 2: l3 -> l1 : [ c^0<=0 ], cost: 1 3: l3 -> l1 : c^0'=1, ox^0'=x^0, [], cost: 1 4: l4 -> l3 : [ c^0<=0 ], cost: 1 5: l4 -> l0 : [ 1<=c^0 ], cost: 1 6: l5 -> l4 : y^0'=-1+y^0, [], cost: 1 7: l5 -> l4 : x^0'=-1+x^0, [], cost: 1 9: l6 -> l1 : [ c^0<=0 ], cost: 1 10: l7 -> l6 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: l7 8: l1 -> l5 : [ 1<=x^0 && 1<=y^0 ], cost: 1 2: l3 -> l1 : [ c^0<=0 ], cost: 1 3: l3 -> l1 : c^0'=1, ox^0'=x^0, [], cost: 1 4: l4 -> l3 : [ c^0<=0 ], cost: 1 12: l4 -> l1 : [ 1<=c^0 && 1+x^0<=ox^0 ], cost: 2 6: l5 -> l4 : y^0'=-1+y^0, [], cost: 1 7: l5 -> l4 : x^0'=-1+x^0, [], cost: 1 11: l7 -> l1 : [ c^0<=0 ], cost: 2 Eliminated locations (on tree-shaped paths): Start location: l7 13: l1 -> l4 : y^0'=-1+y^0, [ 1<=x^0 && 1<=y^0 ], cost: 2 14: l1 -> l4 : x^0'=-1+x^0, [ 1<=x^0 && 1<=y^0 ], cost: 2 12: l4 -> l1 : [ 1<=c^0 && 1+x^0<=ox^0 ], cost: 2 15: l4 -> l1 : [ c^0<=0 ], cost: 2 16: l4 -> l1 : c^0'=1, ox^0'=x^0, [ c^0<=0 ], cost: 2 11: l7 -> l1 : [ c^0<=0 ], cost: 2 Eliminated locations (on tree-shaped paths): Start location: l7 17: l1 -> l1 : y^0'=-1+y^0, [ 1<=x^0 && 1<=y^0 && 1<=c^0 && 1+x^0<=ox^0 ], cost: 4 18: l1 -> l1 : y^0'=-1+y^0, [ 1<=x^0 && 1<=y^0 && c^0<=0 ], cost: 4 19: l1 -> l1 : c^0'=1, ox^0'=x^0, y^0'=-1+y^0, [ 1<=x^0 && 1<=y^0 && c^0<=0 ], cost: 4 20: l1 -> l1 : x^0'=-1+x^0, [ 1<=x^0 && 1<=y^0 && 1<=c^0 && x^0<=ox^0 ], cost: 4 21: l1 -> l1 : x^0'=-1+x^0, [ 1<=x^0 && 1<=y^0 && c^0<=0 ], cost: 4 22: l1 -> l1 : c^0'=1, ox^0'=-1+x^0, x^0'=-1+x^0, [ 1<=x^0 && 1<=y^0 && c^0<=0 ], cost: 4 11: l7 -> l1 : [ c^0<=0 ], cost: 2 Accelerating simple loops of location 1. Accelerating the following rules: 17: l1 -> l1 : y^0'=-1+y^0, [ 1<=x^0 && 1<=y^0 && 1<=c^0 && 1+x^0<=ox^0 ], cost: 4 18: l1 -> l1 : y^0'=-1+y^0, [ 1<=x^0 && 1<=y^0 && c^0<=0 ], cost: 4 19: l1 -> l1 : c^0'=1, ox^0'=x^0, y^0'=-1+y^0, [ 1<=x^0 && 1<=y^0 && c^0<=0 ], cost: 4 20: l1 -> l1 : x^0'=-1+x^0, [ 1<=x^0 && 1<=y^0 && 1<=c^0 && x^0<=ox^0 ], cost: 4 21: l1 -> l1 : x^0'=-1+x^0, [ 1<=x^0 && 1<=y^0 && c^0<=0 ], cost: 4 22: l1 -> l1 : c^0'=1, ox^0'=-1+x^0, x^0'=-1+x^0, [ 1<=x^0 && 1<=y^0 && c^0<=0 ], cost: 4 Accelerated rule 17 with metering function y^0, yielding the new rule 23. Accelerated rule 18 with metering function y^0, yielding the new rule 24. Found no metering function for rule 19. Accelerated rule 20 with metering function x^0, yielding the new rule 25. Accelerated rule 21 with metering function x^0, yielding the new rule 26. Found no metering function for rule 22. Removing the simple loops: 17 18 20 21. Accelerated all simple loops using metering functions (where possible): Start location: l7 19: l1 -> l1 : c^0'=1, ox^0'=x^0, y^0'=-1+y^0, [ 1<=x^0 && 1<=y^0 && c^0<=0 ], cost: 4 22: l1 -> l1 : c^0'=1, ox^0'=-1+x^0, x^0'=-1+x^0, [ 1<=x^0 && 1<=y^0 && c^0<=0 ], cost: 4 23: l1 -> l1 : y^0'=0, [ 1<=x^0 && 1<=y^0 && 1<=c^0 && 1+x^0<=ox^0 ], cost: 4*y^0 24: l1 -> l1 : y^0'=0, [ 1<=x^0 && 1<=y^0 && c^0<=0 ], cost: 4*y^0 25: l1 -> l1 : x^0'=0, [ 1<=x^0 && 1<=y^0 && 1<=c^0 && x^0<=ox^0 ], cost: 4*x^0 26: l1 -> l1 : x^0'=0, [ 1<=x^0 && 1<=y^0 && c^0<=0 ], cost: 4*x^0 11: l7 -> l1 : [ c^0<=0 ], cost: 2 Chained accelerated rules (with incoming rules): Start location: l7 11: l7 -> l1 : [ c^0<=0 ], cost: 2 27: l7 -> l1 : c^0'=1, ox^0'=x^0, y^0'=-1+y^0, [ c^0<=0 && 1<=x^0 && 1<=y^0 ], cost: 6 28: l7 -> l1 : c^0'=1, ox^0'=-1+x^0, x^0'=-1+x^0, [ c^0<=0 && 1<=x^0 && 1<=y^0 ], cost: 6 29: l7 -> l1 : y^0'=0, [ c^0<=0 && 1<=x^0 && 1<=y^0 ], cost: 2+4*y^0 30: l7 -> l1 : x^0'=0, [ c^0<=0 && 1<=x^0 && 1<=y^0 ], cost: 2+4*x^0 Removed unreachable locations (and leaf rules with constant cost): Start location: l7 29: l7 -> l1 : y^0'=0, [ c^0<=0 && 1<=x^0 && 1<=y^0 ], cost: 2+4*y^0 30: l7 -> l1 : x^0'=0, [ c^0<=0 && 1<=x^0 && 1<=y^0 ], cost: 2+4*x^0 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l7 29: l7 -> l1 : y^0'=0, [ c^0<=0 && 1<=x^0 && 1<=y^0 ], cost: 2+4*y^0 30: l7 -> l1 : x^0'=0, [ c^0<=0 && 1<=x^0 && 1<=y^0 ], cost: 2+4*x^0 Computing asymptotic complexity for rule 29 Solved the limit problem by the following transformations: Created initial limit problem: x^0 (+/+!), 2+4*y^0 (+), y^0 (+/+!), 1-c^0 (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {x^0==n,y^0==n,c^0==-n} resulting limit problem: [solved] Solution: x^0 / n y^0 / n c^0 / -n Resulting cost 2+4*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 2+4*n Rule cost: 2+4*y^0 Rule guard: [ c^0<=0 && 1<=x^0 && 1<=y^0 ] WORST_CASE(Omega(n^1),?)