WORST_CASE(Omega(n^1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: l7 0: l0 -> l1 : Result_4^0'=Result_4^post_1, x_5^0'=x_5^post_1, y_6^0'=y_6^post_1, [ Result_4^0==Result_4^post_1 && x_5^0==x_5^post_1 && y_6^0==y_6^post_1 ], cost: 1 1: l1 -> l3 : Result_4^0'=Result_4^post_2, x_5^0'=x_5^post_2, y_6^0'=y_6^post_2, [ y_6^0-x_5^0<=0 && y_6^0-x_5^0<=0 && Result_4^0==Result_4^post_2 && x_5^0==x_5^post_2 && y_6^0==y_6^post_2 ], cost: 1 5: l1 -> l5 : Result_4^0'=Result_4^post_6, x_5^0'=x_5^post_6, y_6^0'=y_6^post_6, [ y_6^0-x_5^0<=0 && y_6^0-x_5^0<=0 && x_5^0<=y_6^0 && y_6^0<=x_5^0 && x_5^post_6==1+x_5^0 && Result_4^0==Result_4^post_6 && y_6^0==y_6^post_6 ], cost: 1 7: l1 -> l6 : Result_4^0'=Result_4^post_8, x_5^0'=x_5^post_8, y_6^0'=y_6^post_8, [ 0<=-1+y_6^0-x_5^0 && x_5^post_8==1+x_5^0 && Result_4^0==Result_4^post_8 && y_6^0==y_6^post_8 ], cost: 1 2: l3 -> l4 : Result_4^0'=Result_4^post_3, x_5^0'=x_5^post_3, y_6^0'=y_6^post_3, [ 1+x_5^0<=y_6^0 && Result_4^0==Result_4^post_3 && x_5^0==x_5^post_3 && y_6^0==y_6^post_3 ], cost: 1 3: l3 -> l4 : Result_4^0'=Result_4^post_4, x_5^0'=x_5^post_4, y_6^0'=y_6^post_4, [ 1+y_6^0<=x_5^0 && Result_4^0==Result_4^post_4 && x_5^0==x_5^post_4 && y_6^0==y_6^post_4 ], cost: 1 4: l4 -> l2 : Result_4^0'=Result_4^post_5, x_5^0'=x_5^post_5, y_6^0'=y_6^post_5, [ Result_4^post_5==Result_4^post_5 && x_5^0==x_5^post_5 && y_6^0==y_6^post_5 ], cost: 1 6: l5 -> l1 : Result_4^0'=Result_4^post_7, x_5^0'=x_5^post_7, y_6^0'=y_6^post_7, [ Result_4^0==Result_4^post_7 && x_5^0==x_5^post_7 && y_6^0==y_6^post_7 ], cost: 1 8: l6 -> l1 : Result_4^0'=Result_4^post_9, x_5^0'=x_5^post_9, y_6^0'=y_6^post_9, [ Result_4^0==Result_4^post_9 && x_5^0==x_5^post_9 && y_6^0==y_6^post_9 ], cost: 1 9: l7 -> l0 : Result_4^0'=Result_4^post_10, x_5^0'=x_5^post_10, y_6^0'=y_6^post_10, [ Result_4^0==Result_4^post_10 && x_5^0==x_5^post_10 && y_6^0==y_6^post_10 ], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 9: l7 -> l0 : Result_4^0'=Result_4^post_10, x_5^0'=x_5^post_10, y_6^0'=y_6^post_10, [ Result_4^0==Result_4^post_10 && x_5^0==x_5^post_10 && y_6^0==y_6^post_10 ], cost: 1 Removed unreachable and leaf rules: Start location: l7 0: l0 -> l1 : Result_4^0'=Result_4^post_1, x_5^0'=x_5^post_1, y_6^0'=y_6^post_1, [ Result_4^0==Result_4^post_1 && x_5^0==x_5^post_1 && y_6^0==y_6^post_1 ], cost: 1 5: l1 -> l5 : Result_4^0'=Result_4^post_6, x_5^0'=x_5^post_6, y_6^0'=y_6^post_6, [ y_6^0-x_5^0<=0 && y_6^0-x_5^0<=0 && x_5^0<=y_6^0 && y_6^0<=x_5^0 && x_5^post_6==1+x_5^0 && Result_4^0==Result_4^post_6 && y_6^0==y_6^post_6 ], cost: 1 7: l1 -> l6 : Result_4^0'=Result_4^post_8, x_5^0'=x_5^post_8, y_6^0'=y_6^post_8, [ 0<=-1+y_6^0-x_5^0 && x_5^post_8==1+x_5^0 && Result_4^0==Result_4^post_8 && y_6^0==y_6^post_8 ], cost: 1 6: l5 -> l1 : Result_4^0'=Result_4^post_7, x_5^0'=x_5^post_7, y_6^0'=y_6^post_7, [ Result_4^0==Result_4^post_7 && x_5^0==x_5^post_7 && y_6^0==y_6^post_7 ], cost: 1 8: l6 -> l1 : Result_4^0'=Result_4^post_9, x_5^0'=x_5^post_9, y_6^0'=y_6^post_9, [ Result_4^0==Result_4^post_9 && x_5^0==x_5^post_9 && y_6^0==y_6^post_9 ], cost: 1 9: l7 -> l0 : Result_4^0'=Result_4^post_10, x_5^0'=x_5^post_10, y_6^0'=y_6^post_10, [ Result_4^0==Result_4^post_10 && x_5^0==x_5^post_10 && y_6^0==y_6^post_10 ], cost: 1 Simplified all rules, resulting in: Start location: l7 0: l0 -> l1 : [], cost: 1 5: l1 -> l5 : x_5^0'=1+x_5^0, [ y_6^0-x_5^0==0 ], cost: 1 7: l1 -> l6 : x_5^0'=1+x_5^0, [ 0<=-1+y_6^0-x_5^0 ], cost: 1 6: l5 -> l1 : [], cost: 1 8: l6 -> l1 : [], cost: 1 9: l7 -> l0 : [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: l7 11: l1 -> l1 : x_5^0'=1+x_5^0, [ y_6^0-x_5^0==0 ], cost: 2 12: l1 -> l1 : x_5^0'=1+x_5^0, [ 0<=-1+y_6^0-x_5^0 ], cost: 2 10: l7 -> l1 : [], cost: 2 Accelerating simple loops of location 1. Accelerating the following rules: 11: l1 -> l1 : x_5^0'=1+x_5^0, [ y_6^0-x_5^0==0 ], cost: 2 12: l1 -> l1 : x_5^0'=1+x_5^0, [ 0<=-1+y_6^0-x_5^0 ], cost: 2 Accelerated rule 11 with metering function 1+y_6^0-x_5^0, yielding the new rule 13. Accelerated rule 12 with metering function y_6^0-x_5^0, yielding the new rule 14. Removing the simple loops: 11 12. Accelerated all simple loops using metering functions (where possible): Start location: l7 13: l1 -> l1 : x_5^0'=1+y_6^0, [ y_6^0-x_5^0==0 ], cost: 2+2*y_6^0-2*x_5^0 14: l1 -> l1 : x_5^0'=y_6^0, [ 0<=-1+y_6^0-x_5^0 ], cost: 2*y_6^0-2*x_5^0 10: l7 -> l1 : [], cost: 2 Chained accelerated rules (with incoming rules): Start location: l7 10: l7 -> l1 : [], cost: 2 15: l7 -> l1 : x_5^0'=1+y_6^0, [ y_6^0-x_5^0==0 ], cost: 4+2*y_6^0-2*x_5^0 16: l7 -> l1 : x_5^0'=y_6^0, [ 0<=-1+y_6^0-x_5^0 ], cost: 2+2*y_6^0-2*x_5^0 Removed unreachable locations (and leaf rules with constant cost): Start location: l7 15: l7 -> l1 : x_5^0'=1+y_6^0, [ y_6^0-x_5^0==0 ], cost: 4+2*y_6^0-2*x_5^0 16: l7 -> l1 : x_5^0'=y_6^0, [ 0<=-1+y_6^0-x_5^0 ], cost: 2+2*y_6^0-2*x_5^0 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: l7 15: l7 -> l1 : x_5^0'=1+y_6^0, [ y_6^0-x_5^0==0 ], cost: 4+2*y_6^0-2*x_5^0 16: l7 -> l1 : x_5^0'=y_6^0, [ 0<=-1+y_6^0-x_5^0 ], cost: 2+2*y_6^0-2*x_5^0 Computing asymptotic complexity for rule 15 Could not solve the limit problem. Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 16 Solved the limit problem by the following transformations: Created initial limit problem: 2+2*y_6^0-2*x_5^0 (+), y_6^0-x_5^0 (+/+!) [not solved] removing all constraints (solved by SMT) resulting limit problem: [solved] applying transformation rule (C) using substitution {y_6^0==0,x_5^0==-n} resulting limit problem: [solved] Solution: y_6^0 / 0 x_5^0 / -n Resulting cost 2+2*n has complexity: Poly(n^1) Found new complexity Poly(n^1). Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Poly(n^1) Cpx degree: 1 Solved cost: 2+2*n Rule cost: 2+2*y_6^0-2*x_5^0 Rule guard: [ 0<=-1+y_6^0-x_5^0 ] WORST_CASE(Omega(n^1),?)