YES proof of prog.inttrs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination of the given IRSwT could be proven: (0) IRSwT (1) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (2) IRSwT (3) IRSwTTerminationDigraphProof [EQUIVALENT, 259 ms] (4) AND (5) IRSwT (6) IntTRSCompressionProof [EQUIVALENT, 0 ms] (7) IRSwT (8) IntTRSUnneededArgumentFilterProof [EQUIVALENT, 0 ms] (9) IRSwT (10) TempFilterProof [SOUND, 15 ms] (11) IntTRS (12) PolynomialOrderProcessor [EQUIVALENT, 0 ms] (13) YES (14) IRSwT (15) IntTRSCompressionProof [EQUIVALENT, 0 ms] (16) IRSwT (17) TempFilterProof [SOUND, 4 ms] (18) IntTRS (19) PolynomialOrderProcessor [EQUIVALENT, 0 ms] (20) YES ---------------------------------------- (0) Obligation: Rules: f1_0_main_Load(arg1, arg2, arg3) -> f213_0_main_GT(arg1P, arg2P, arg3P) :|: 0 <= arg1 - 1 && -1 <= arg1P - 1 && -1 <= arg3P - 1 && -1 <= arg2 - 1 && -1 <= arg2P - 1 f213_0_main_GT(x, x1, x2) -> f252_0_main_LE(x3, x4, x5) :|: x2 = x5 && x1 = x4 && x = x3 && x2 <= x1 - 1 f213_0_main_GT(x6, x7, x8) -> f252_0_main_LE(x9, x10, x11) :|: x8 = x11 && x7 = x10 && x6 = x9 && x8 <= x6 - 1 && x7 <= x8 f252_0_main_LE(x12, x13, x14) -> f213_0_main_GT(x15, x16, x17) :|: x14 = x17 && x13 - 1 = x16 && x12 = x15 && x14 <= x13 - 1 f252_0_main_LE(x18, x19, x20) -> f213_0_main_GT(x21, x22, x23) :|: x20 = x23 && x19 = x22 && x18 = x21 && x18 <= x20 && x19 <= x20 f252_0_main_LE(x24, x25, x26) -> f213_0_main_GT(x27, x28, x29) :|: x26 = x29 && x25 = x28 && x24 - 1 = x27 && x26 <= x24 - 1 && x25 <= x26 __init(x30, x31, x32) -> f1_0_main_Load(x33, x34, x35) :|: 0 <= 0 Start term: __init(arg1, arg2, arg3) ---------------------------------------- (1) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (2) Obligation: Rules: f1_0_main_Load(arg1, arg2, arg3) -> f213_0_main_GT(arg1P, arg2P, arg3P) :|: 0 <= arg1 - 1 && -1 <= arg1P - 1 && -1 <= arg3P - 1 && -1 <= arg2 - 1 && -1 <= arg2P - 1 f213_0_main_GT(x, x1, x2) -> f252_0_main_LE(x3, x4, x5) :|: x2 = x5 && x1 = x4 && x = x3 && x2 <= x1 - 1 f213_0_main_GT(x6, x7, x8) -> f252_0_main_LE(x9, x10, x11) :|: x8 = x11 && x7 = x10 && x6 = x9 && x8 <= x6 - 1 && x7 <= x8 f252_0_main_LE(x12, x13, x14) -> f213_0_main_GT(x15, x16, x17) :|: x14 = x17 && x13 - 1 = x16 && x12 = x15 && x14 <= x13 - 1 f252_0_main_LE(x18, x19, x20) -> f213_0_main_GT(x21, x22, x23) :|: x20 = x23 && x19 = x22 && x18 = x21 && x18 <= x20 && x19 <= x20 f252_0_main_LE(x24, x25, x26) -> f213_0_main_GT(x27, x28, x29) :|: x26 = x29 && x25 = x28 && x24 - 1 = x27 && x26 <= x24 - 1 && x25 <= x26 __init(x30, x31, x32) -> f1_0_main_Load(x33, x34, x35) :|: 0 <= 0 Start term: __init(arg1, arg2, arg3) ---------------------------------------- (3) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) f1_0_main_Load(arg1, arg2, arg3) -> f213_0_main_GT(arg1P, arg2P, arg3P) :|: 0 <= arg1 - 1 && -1 <= arg1P - 1 && -1 <= arg3P - 1 && -1 <= arg2 - 1 && -1 <= arg2P - 1 (2) f213_0_main_GT(x, x1, x2) -> f252_0_main_LE(x3, x4, x5) :|: x2 = x5 && x1 = x4 && x = x3 && x2 <= x1 - 1 (3) f213_0_main_GT(x6, x7, x8) -> f252_0_main_LE(x9, x10, x11) :|: x8 = x11 && x7 = x10 && x6 = x9 && x8 <= x6 - 1 && x7 <= x8 (4) f252_0_main_LE(x12, x13, x14) -> f213_0_main_GT(x15, x16, x17) :|: x14 = x17 && x13 - 1 = x16 && x12 = x15 && x14 <= x13 - 1 (5) f252_0_main_LE(x18, x19, x20) -> f213_0_main_GT(x21, x22, x23) :|: x20 = x23 && x19 = x22 && x18 = x21 && x18 <= x20 && x19 <= x20 (6) f252_0_main_LE(x24, x25, x26) -> f213_0_main_GT(x27, x28, x29) :|: x26 = x29 && x25 = x28 && x24 - 1 = x27 && x26 <= x24 - 1 && x25 <= x26 (7) __init(x30, x31, x32) -> f1_0_main_Load(x33, x34, x35) :|: 0 <= 0 Arcs: (1) -> (2), (3) (2) -> (4) (3) -> (6) (4) -> (2), (3) (6) -> (3) (7) -> (1) This digraph is fully evaluated! ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Termination digraph: Nodes: (1) f213_0_main_GT(x, x1, x2) -> f252_0_main_LE(x3, x4, x5) :|: x2 = x5 && x1 = x4 && x = x3 && x2 <= x1 - 1 (2) f252_0_main_LE(x12, x13, x14) -> f213_0_main_GT(x15, x16, x17) :|: x14 = x17 && x13 - 1 = x16 && x12 = x15 && x14 <= x13 - 1 Arcs: (1) -> (2) (2) -> (1) This digraph is fully evaluated! ---------------------------------------- (6) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (7) Obligation: Rules: f213_0_main_GT(x15:0, x1:0, x17:0) -> f213_0_main_GT(x15:0, x1:0 - 1, x17:0) :|: x1:0 - 1 >= x17:0 ---------------------------------------- (8) IntTRSUnneededArgumentFilterProof (EQUIVALENT) Some arguments are removed because they cannot influence termination. We removed arguments according to the following replacements: f213_0_main_GT(x1, x2, x3) -> f213_0_main_GT(x2, x3) ---------------------------------------- (9) Obligation: Rules: f213_0_main_GT(x1:0, x17:0) -> f213_0_main_GT(x1:0 - 1, x17:0) :|: x1:0 - 1 >= x17:0 ---------------------------------------- (10) TempFilterProof (SOUND) Used the following sort dictionary for filtering: f213_0_main_GT(INTEGER, INTEGER) Replaced non-predefined constructor symbols by 0. ---------------------------------------- (11) Obligation: Rules: f213_0_main_GT(x1:0, x17:0) -> f213_0_main_GT(c, x17:0) :|: c = x1:0 - 1 && x1:0 - 1 >= x17:0 ---------------------------------------- (12) PolynomialOrderProcessor (EQUIVALENT) Found the following polynomial interpretation: [f213_0_main_GT(x, x1)] = x - x1 The following rules are decreasing: f213_0_main_GT(x1:0, x17:0) -> f213_0_main_GT(c, x17:0) :|: c = x1:0 - 1 && x1:0 - 1 >= x17:0 The following rules are bounded: f213_0_main_GT(x1:0, x17:0) -> f213_0_main_GT(c, x17:0) :|: c = x1:0 - 1 && x1:0 - 1 >= x17:0 ---------------------------------------- (13) YES ---------------------------------------- (14) Obligation: Termination digraph: Nodes: (1) f213_0_main_GT(x6, x7, x8) -> f252_0_main_LE(x9, x10, x11) :|: x8 = x11 && x7 = x10 && x6 = x9 && x8 <= x6 - 1 && x7 <= x8 (2) f252_0_main_LE(x24, x25, x26) -> f213_0_main_GT(x27, x28, x29) :|: x26 = x29 && x25 = x28 && x24 - 1 = x27 && x26 <= x24 - 1 && x25 <= x26 Arcs: (1) -> (2) (2) -> (1) This digraph is fully evaluated! ---------------------------------------- (15) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (16) Obligation: Rules: f213_0_main_GT(x6:0, x10:0, x11:0) -> f213_0_main_GT(x6:0 - 1, x10:0, x11:0) :|: x6:0 - 1 >= x11:0 && x11:0 >= x10:0 ---------------------------------------- (17) TempFilterProof (SOUND) Used the following sort dictionary for filtering: f213_0_main_GT(INTEGER, INTEGER, INTEGER) Replaced non-predefined constructor symbols by 0. ---------------------------------------- (18) Obligation: Rules: f213_0_main_GT(x6:0, x10:0, x11:0) -> f213_0_main_GT(c, x10:0, x11:0) :|: c = x6:0 - 1 && (x6:0 - 1 >= x11:0 && x11:0 >= x10:0) ---------------------------------------- (19) PolynomialOrderProcessor (EQUIVALENT) Found the following polynomial interpretation: [f213_0_main_GT(x, x1, x2)] = x - x1 The following rules are decreasing: f213_0_main_GT(x6:0, x10:0, x11:0) -> f213_0_main_GT(c, x10:0, x11:0) :|: c = x6:0 - 1 && (x6:0 - 1 >= x11:0 && x11:0 >= x10:0) The following rules are bounded: f213_0_main_GT(x6:0, x10:0, x11:0) -> f213_0_main_GT(c, x10:0, x11:0) :|: c = x6:0 - 1 && (x6:0 - 1 >= x11:0 && x11:0 >= x10:0) ---------------------------------------- (20) YES