YES proof of prog.inttrs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination of the given IRSwT could be proven: (0) IRSwT (1) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (2) IRSwT (3) IRSwTTerminationDigraphProof [EQUIVALENT, 159 ms] (4) IRSwT (5) IntTRSCompressionProof [EQUIVALENT, 9 ms] (6) IRSwT (7) IRSwTChainingProof [EQUIVALENT, 0 ms] (8) IRSwT (9) IRSwTTerminationDigraphProof [EQUIVALENT, 0 ms] (10) IRSwT (11) IntTRSCompressionProof [EQUIVALENT, 0 ms] (12) IRSwT (13) TempFilterProof [SOUND, 38 ms] (14) IntTRS (15) PolynomialOrderProcessor [EQUIVALENT, 0 ms] (16) YES ---------------------------------------- (0) Obligation: Rules: f1_0_main_Load(arg1, arg2, arg3) -> f260_0_loop_LE(arg1P, arg2P, arg3P) :|: 0 = arg3P && 0 = arg2P && 0 = arg1P && 0 = arg2 && 0 <= arg1 - 1 f1_0_main_Load(x, x1, x3) -> f260_0_loop_LE(x4, x7, x8) :|: 0 <= x - 1 && -1 <= x9 - 1 && 1 = x1 && 0 = x4 && 0 - x9 = x7 && 0 = x8 f1_0_main_Load(x10, x11, x12) -> f260_0_loop_LE(x13, x14, x15) :|: -1 <= x16 - 1 && 1 <= x11 - 1 && -1 <= x17 - 1 && 0 <= x10 - 1 && 0 - x17 = x13 && 0 - x16 = x14 && 0 - x17 = x15 f260_0_loop_LE(x18, x19, x20) -> f260_0_loop_LE(x21, x22, x23) :|: x18 + x19 = x23 && x19 + 1 = x22 && x18 + x19 = x21 && x18 = x20 && x18 <= x19 + 1 - 1 && x19 <= x19 + 1 - 1 && x18 <= x19 - 1 __init(x24, x25, x26) -> f1_0_main_Load(x27, x28, x29) :|: 0 <= 0 Start term: __init(arg1, arg2, arg3) ---------------------------------------- (1) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (2) Obligation: Rules: f1_0_main_Load(arg1, arg2, arg3) -> f260_0_loop_LE(arg1P, arg2P, arg3P) :|: 0 = arg3P && 0 = arg2P && 0 = arg1P && 0 = arg2 && 0 <= arg1 - 1 f1_0_main_Load(x, x1, x3) -> f260_0_loop_LE(x4, x7, x8) :|: 0 <= x - 1 && -1 <= x9 - 1 && 1 = x1 && 0 = x4 && 0 - x9 = x7 && 0 = x8 f1_0_main_Load(x10, x11, x12) -> f260_0_loop_LE(x13, x14, x15) :|: -1 <= x16 - 1 && 1 <= x11 - 1 && -1 <= x17 - 1 && 0 <= x10 - 1 && 0 - x17 = x13 && 0 - x16 = x14 && 0 - x17 = x15 f260_0_loop_LE(x18, x19, x20) -> f260_0_loop_LE(x21, x22, x23) :|: x18 + x19 = x23 && x19 + 1 = x22 && x18 + x19 = x21 && x18 = x20 && x18 <= x19 + 1 - 1 && x19 <= x19 + 1 - 1 && x18 <= x19 - 1 __init(x24, x25, x26) -> f1_0_main_Load(x27, x28, x29) :|: 0 <= 0 Start term: __init(arg1, arg2, arg3) ---------------------------------------- (3) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) f1_0_main_Load(arg1, arg2, arg3) -> f260_0_loop_LE(arg1P, arg2P, arg3P) :|: 0 = arg3P && 0 = arg2P && 0 = arg1P && 0 = arg2 && 0 <= arg1 - 1 (2) f1_0_main_Load(x, x1, x3) -> f260_0_loop_LE(x4, x7, x8) :|: 0 <= x - 1 && -1 <= x9 - 1 && 1 = x1 && 0 = x4 && 0 - x9 = x7 && 0 = x8 (3) f1_0_main_Load(x10, x11, x12) -> f260_0_loop_LE(x13, x14, x15) :|: -1 <= x16 - 1 && 1 <= x11 - 1 && -1 <= x17 - 1 && 0 <= x10 - 1 && 0 - x17 = x13 && 0 - x16 = x14 && 0 - x17 = x15 (4) f260_0_loop_LE(x18, x19, x20) -> f260_0_loop_LE(x21, x22, x23) :|: x18 + x19 = x23 && x19 + 1 = x22 && x18 + x19 = x21 && x18 = x20 && x18 <= x19 + 1 - 1 && x19 <= x19 + 1 - 1 && x18 <= x19 - 1 (5) __init(x24, x25, x26) -> f1_0_main_Load(x27, x28, x29) :|: 0 <= 0 Arcs: (3) -> (4) (4) -> (4) (5) -> (1), (2), (3) This digraph is fully evaluated! ---------------------------------------- (4) Obligation: Termination digraph: Nodes: (1) f260_0_loop_LE(x18, x19, x20) -> f260_0_loop_LE(x21, x22, x23) :|: x18 + x19 = x23 && x19 + 1 = x22 && x18 + x19 = x21 && x18 = x20 && x18 <= x19 + 1 - 1 && x19 <= x19 + 1 - 1 && x18 <= x19 - 1 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (5) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (6) Obligation: Rules: f260_0_loop_LE(x18:0, x19:0, x18:0) -> f260_0_loop_LE(x18:0 + x19:0, x19:0 + 1, x18:0 + x19:0) :|: x19:0 - 1 >= x18:0 && x19:0 >= x18:0 ---------------------------------------- (7) IRSwTChainingProof (EQUIVALENT) Chaining! ---------------------------------------- (8) Obligation: Rules: f260_0_loop_LE(x, x1, x) -> f260_0_loop_LE(x + 2 * x1 + 1, x1 + 2, x + 2 * x1 + 1) :|: TRUE && x1 + -1 * x >= 1 && -1 * x >= 0 ---------------------------------------- (9) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) f260_0_loop_LE(x, x1, x) -> f260_0_loop_LE(x + 2 * x1 + 1, x1 + 2, x + 2 * x1 + 1) :|: TRUE && x1 + -1 * x >= 1 && -1 * x >= 0 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (10) Obligation: Termination digraph: Nodes: (1) f260_0_loop_LE(x, x1, x) -> f260_0_loop_LE(x + 2 * x1 + 1, x1 + 2, x + 2 * x1 + 1) :|: TRUE && x1 + -1 * x >= 1 && -1 * x >= 0 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (11) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (12) Obligation: Rules: f260_0_loop_LE(x:0, x1:0, x:0) -> f260_0_loop_LE(x:0 + 2 * x1:0 + 1, x1:0 + 2, x:0 + 2 * x1:0 + 1) :|: 0 <= -1 * x:0 && x1:0 + -1 * x:0 >= 1 ---------------------------------------- (13) TempFilterProof (SOUND) Used the following sort dictionary for filtering: f260_0_loop_LE(INTEGER, INTEGER, INTEGER) Replaced non-predefined constructor symbols by 0. ---------------------------------------- (14) Obligation: Rules: f260_0_loop_LE(x:0, x1:0, x:0) -> f260_0_loop_LE(c, c1, c2) :|: c2 = x:0 + 2 * x1:0 + 1 && (c1 = x1:0 + 2 && c = x:0 + 2 * x1:0 + 1) && (0 <= -1 * x:0 && x1:0 + -1 * x:0 >= 1) ---------------------------------------- (15) PolynomialOrderProcessor (EQUIVALENT) Found the following polynomial interpretation: [f260_0_loop_LE(x, x1, x2)] = 1 - 2*x - 2*x1 + x1^2 The following rules are decreasing: f260_0_loop_LE(x:0, x1:0, x:0) -> f260_0_loop_LE(c, c1, c2) :|: c2 = x:0 + 2 * x1:0 + 1 && (c1 = x1:0 + 2 && c = x:0 + 2 * x1:0 + 1) && (0 <= -1 * x:0 && x1:0 + -1 * x:0 >= 1) The following rules are bounded: f260_0_loop_LE(x:0, x1:0, x:0) -> f260_0_loop_LE(c, c1, c2) :|: c2 = x:0 + 2 * x1:0 + 1 && (c1 = x1:0 + 2 && c = x:0 + 2 * x1:0 + 1) && (0 <= -1 * x:0 && x1:0 + -1 * x:0 >= 1) ---------------------------------------- (16) YES