YES proof of prog.inttrs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination of the given IRSwT could be proven: (0) IRSwT (1) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (2) IRSwT (3) IRSwTTerminationDigraphProof [EQUIVALENT, 203 ms] (4) AND (5) IRSwT (6) IntTRSCompressionProof [EQUIVALENT, 3 ms] (7) IRSwT (8) TempFilterProof [SOUND, 17 ms] (9) IntTRS (10) PolynomialOrderProcessor [EQUIVALENT, 0 ms] (11) YES (12) IRSwT (13) IntTRSCompressionProof [EQUIVALENT, 2 ms] (14) IRSwT (15) TempFilterProof [SOUND, 25 ms] (16) IntTRS (17) PolynomialOrderProcessor [EQUIVALENT, 0 ms] (18) YES ---------------------------------------- (0) Obligation: Rules: f1_0_main_Load(arg1, arg2, arg3) -> f148_0_main_LE(arg1P, arg2P, arg3P) :|: arg1P + arg2P = arg3P && 0 <= arg1 - 1 && -1 <= arg2P - 1 && -1 <= arg2 - 1 && -1 <= arg1P - 1 f148_0_main_LE(x, x1, x2) -> f148_0_main_LE(x3, x4, x5) :|: x - 1 + x1 = x5 && x1 = x4 && x - 1 = x3 && -1 <= x1 - 1 && 0 <= x2 - 1 && 0 <= x - 1 f148_0_main_LE(x6, x7, x8) -> f148_0_main_LE(x9, x10, x11) :|: 0 = x11 && 0 = x10 && 0 = x9 && 0 = x7 && 0 = x6 && 0 <= x8 - 1 f148_0_main_LE(x12, x13, x14) -> f148_0_main_LE(x15, x16, x17) :|: x13 - 1 = x17 && x13 - 1 = x16 && 0 = x15 && 0 = x12 && 0 <= x13 - 1 && 0 <= x14 - 1 __init(x18, x19, x20) -> f1_0_main_Load(x21, x22, x23) :|: 0 <= 0 Start term: __init(arg1, arg2, arg3) ---------------------------------------- (1) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (2) Obligation: Rules: f1_0_main_Load(arg1, arg2, arg3) -> f148_0_main_LE(arg1P, arg2P, arg3P) :|: arg1P + arg2P = arg3P && 0 <= arg1 - 1 && -1 <= arg2P - 1 && -1 <= arg2 - 1 && -1 <= arg1P - 1 f148_0_main_LE(x, x1, x2) -> f148_0_main_LE(x3, x4, x5) :|: x - 1 + x1 = x5 && x1 = x4 && x - 1 = x3 && -1 <= x1 - 1 && 0 <= x2 - 1 && 0 <= x - 1 f148_0_main_LE(x6, x7, x8) -> f148_0_main_LE(x9, x10, x11) :|: 0 = x11 && 0 = x10 && 0 = x9 && 0 = x7 && 0 = x6 && 0 <= x8 - 1 f148_0_main_LE(x12, x13, x14) -> f148_0_main_LE(x15, x16, x17) :|: x13 - 1 = x17 && x13 - 1 = x16 && 0 = x15 && 0 = x12 && 0 <= x13 - 1 && 0 <= x14 - 1 __init(x18, x19, x20) -> f1_0_main_Load(x21, x22, x23) :|: 0 <= 0 Start term: __init(arg1, arg2, arg3) ---------------------------------------- (3) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) f1_0_main_Load(arg1, arg2, arg3) -> f148_0_main_LE(arg1P, arg2P, arg3P) :|: arg1P + arg2P = arg3P && 0 <= arg1 - 1 && -1 <= arg2P - 1 && -1 <= arg2 - 1 && -1 <= arg1P - 1 (2) f148_0_main_LE(x, x1, x2) -> f148_0_main_LE(x3, x4, x5) :|: x - 1 + x1 = x5 && x1 = x4 && x - 1 = x3 && -1 <= x1 - 1 && 0 <= x2 - 1 && 0 <= x - 1 (3) f148_0_main_LE(x6, x7, x8) -> f148_0_main_LE(x9, x10, x11) :|: 0 = x11 && 0 = x10 && 0 = x9 && 0 = x7 && 0 = x6 && 0 <= x8 - 1 (4) f148_0_main_LE(x12, x13, x14) -> f148_0_main_LE(x15, x16, x17) :|: x13 - 1 = x17 && x13 - 1 = x16 && 0 = x15 && 0 = x12 && 0 <= x13 - 1 && 0 <= x14 - 1 (5) __init(x18, x19, x20) -> f1_0_main_Load(x21, x22, x23) :|: 0 <= 0 Arcs: (1) -> (2), (4) (2) -> (2), (4) (4) -> (4) (5) -> (1) This digraph is fully evaluated! ---------------------------------------- (4) Complex Obligation (AND) ---------------------------------------- (5) Obligation: Termination digraph: Nodes: (1) f148_0_main_LE(x, x1, x2) -> f148_0_main_LE(x3, x4, x5) :|: x - 1 + x1 = x5 && x1 = x4 && x - 1 = x3 && -1 <= x1 - 1 && 0 <= x2 - 1 && 0 <= x - 1 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (6) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (7) Obligation: Rules: f148_0_main_LE(x:0, x1:0, x2:0) -> f148_0_main_LE(x:0 - 1, x1:0, x:0 - 1 + x1:0) :|: x2:0 > 0 && x1:0 > -1 && x:0 > 0 ---------------------------------------- (8) TempFilterProof (SOUND) Used the following sort dictionary for filtering: f148_0_main_LE(INTEGER, INTEGER, INTEGER) Replaced non-predefined constructor symbols by 0. ---------------------------------------- (9) Obligation: Rules: f148_0_main_LE(x:0, x1:0, x2:0) -> f148_0_main_LE(c, x1:0, c1) :|: c1 = x:0 - 1 + x1:0 && c = x:0 - 1 && (x2:0 > 0 && x1:0 > -1 && x:0 > 0) ---------------------------------------- (10) PolynomialOrderProcessor (EQUIVALENT) Found the following polynomial interpretation: [f148_0_main_LE(x, x1, x2)] = x The following rules are decreasing: f148_0_main_LE(x:0, x1:0, x2:0) -> f148_0_main_LE(c, x1:0, c1) :|: c1 = x:0 - 1 + x1:0 && c = x:0 - 1 && (x2:0 > 0 && x1:0 > -1 && x:0 > 0) The following rules are bounded: f148_0_main_LE(x:0, x1:0, x2:0) -> f148_0_main_LE(c, x1:0, c1) :|: c1 = x:0 - 1 + x1:0 && c = x:0 - 1 && (x2:0 > 0 && x1:0 > -1 && x:0 > 0) ---------------------------------------- (11) YES ---------------------------------------- (12) Obligation: Termination digraph: Nodes: (1) f148_0_main_LE(x12, x13, x14) -> f148_0_main_LE(x15, x16, x17) :|: x13 - 1 = x17 && x13 - 1 = x16 && 0 = x15 && 0 = x12 && 0 <= x13 - 1 && 0 <= x14 - 1 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (13) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (14) Obligation: Rules: f148_0_main_LE(cons_0, x13:0, x14:0) -> f148_0_main_LE(0, x13:0 - 1, x13:0 - 1) :|: x14:0 > 0 && x13:0 > 0 && cons_0 = 0 ---------------------------------------- (15) TempFilterProof (SOUND) Used the following sort dictionary for filtering: f148_0_main_LE(VARIABLE, INTEGER, INTEGER) Replaced non-predefined constructor symbols by 0. ---------------------------------------- (16) Obligation: Rules: f148_0_main_LE(c, x13:0, x14:0) -> f148_0_main_LE(c1, c2, c3) :|: c3 = x13:0 - 1 && (c2 = x13:0 - 1 && (c1 = 0 && c = 0)) && (x14:0 > 0 && x13:0 > 0 && cons_0 = 0) ---------------------------------------- (17) PolynomialOrderProcessor (EQUIVALENT) Found the following polynomial interpretation: [f148_0_main_LE(x, x1, x2)] = c*x + x1 The following rules are decreasing: f148_0_main_LE(c, x13:0, x14:0) -> f148_0_main_LE(c1, c2, c3) :|: c3 = x13:0 - 1 && (c2 = x13:0 - 1 && (c1 = 0 && c = 0)) && (x14:0 > 0 && x13:0 > 0 && cons_0 = 0) The following rules are bounded: f148_0_main_LE(c, x13:0, x14:0) -> f148_0_main_LE(c1, c2, c3) :|: c3 = x13:0 - 1 && (c2 = x13:0 - 1 && (c1 = 0 && c = 0)) && (x14:0 > 0 && x13:0 > 0 && cons_0 = 0) ---------------------------------------- (18) YES