YES proof of prog.inttrs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination of the given IRSwT could be proven: (0) IRSwT (1) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (2) IRSwT (3) IRSwTTerminationDigraphProof [EQUIVALENT, 158 ms] (4) IRSwT (5) IntTRSCompressionProof [EQUIVALENT, 36 ms] (6) IRSwT (7) IntTRSUnneededArgumentFilterProof [EQUIVALENT, 0 ms] (8) IRSwT (9) IRSwTChainingProof [EQUIVALENT, 2 ms] (10) IRSwT (11) IRSwTTerminationDigraphProof [EQUIVALENT, 0 ms] (12) IRSwT (13) IntTRSCompressionProof [EQUIVALENT, 0 ms] (14) IRSwT (15) IRSwTChainingProof [EQUIVALENT, 0 ms] (16) IRSwT (17) IRSwTTerminationDigraphProof [EQUIVALENT, 0 ms] (18) IRSwT (19) IntTRSCompressionProof [EQUIVALENT, 0 ms] (20) IRSwT (21) TempFilterProof [SOUND, 17 ms] (22) IntTRS (23) PolynomialOrderProcessor [EQUIVALENT, 0 ms] (24) YES ---------------------------------------- (0) Obligation: Rules: l0(rt_11HAT0, st_14HAT0, x_13HAT0, y_15HAT0) -> l1(rt_11HATpost, st_14HATpost, x_13HATpost, y_15HATpost) :|: y_15HAT0 = y_15HATpost && x_13HAT0 = x_13HATpost && st_14HAT0 = st_14HATpost && rt_11HAT0 = rt_11HATpost l1(x, x1, x2, x3) -> l2(x4, x5, x6, x7) :|: x3 = x7 && x2 = x6 && x1 = x5 && x4 = x1 && x2 <= 0 l1(x8, x9, x10, x11) -> l3(x12, x13, x14, x15) :|: x9 = x13 && x8 = x12 && x15 = -1 + x11 && x14 = x10 + x11 && 1 <= x10 l3(x16, x17, x18, x19) -> l1(x20, x21, x22, x23) :|: x19 = x23 && x18 = x22 && x17 = x21 && x16 = x20 l4(x24, x25, x26, x27) -> l0(x28, x29, x30, x31) :|: x27 = x31 && x26 = x30 && x25 = x29 && x24 = x28 Start term: l4(rt_11HAT0, st_14HAT0, x_13HAT0, y_15HAT0) ---------------------------------------- (1) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (2) Obligation: Rules: l0(rt_11HAT0, st_14HAT0, x_13HAT0, y_15HAT0) -> l1(rt_11HATpost, st_14HATpost, x_13HATpost, y_15HATpost) :|: y_15HAT0 = y_15HATpost && x_13HAT0 = x_13HATpost && st_14HAT0 = st_14HATpost && rt_11HAT0 = rt_11HATpost l1(x, x1, x2, x3) -> l2(x4, x5, x6, x7) :|: x3 = x7 && x2 = x6 && x1 = x5 && x4 = x1 && x2 <= 0 l1(x8, x9, x10, x11) -> l3(x12, x13, x14, x15) :|: x9 = x13 && x8 = x12 && x15 = -1 + x11 && x14 = x10 + x11 && 1 <= x10 l3(x16, x17, x18, x19) -> l1(x20, x21, x22, x23) :|: x19 = x23 && x18 = x22 && x17 = x21 && x16 = x20 l4(x24, x25, x26, x27) -> l0(x28, x29, x30, x31) :|: x27 = x31 && x26 = x30 && x25 = x29 && x24 = x28 Start term: l4(rt_11HAT0, st_14HAT0, x_13HAT0, y_15HAT0) ---------------------------------------- (3) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) l0(rt_11HAT0, st_14HAT0, x_13HAT0, y_15HAT0) -> l1(rt_11HATpost, st_14HATpost, x_13HATpost, y_15HATpost) :|: y_15HAT0 = y_15HATpost && x_13HAT0 = x_13HATpost && st_14HAT0 = st_14HATpost && rt_11HAT0 = rt_11HATpost (2) l1(x, x1, x2, x3) -> l2(x4, x5, x6, x7) :|: x3 = x7 && x2 = x6 && x1 = x5 && x4 = x1 && x2 <= 0 (3) l1(x8, x9, x10, x11) -> l3(x12, x13, x14, x15) :|: x9 = x13 && x8 = x12 && x15 = -1 + x11 && x14 = x10 + x11 && 1 <= x10 (4) l3(x16, x17, x18, x19) -> l1(x20, x21, x22, x23) :|: x19 = x23 && x18 = x22 && x17 = x21 && x16 = x20 (5) l4(x24, x25, x26, x27) -> l0(x28, x29, x30, x31) :|: x27 = x31 && x26 = x30 && x25 = x29 && x24 = x28 Arcs: (1) -> (2), (3) (3) -> (4) (4) -> (2), (3) (5) -> (1) This digraph is fully evaluated! ---------------------------------------- (4) Obligation: Termination digraph: Nodes: (1) l1(x8, x9, x10, x11) -> l3(x12, x13, x14, x15) :|: x9 = x13 && x8 = x12 && x15 = -1 + x11 && x14 = x10 + x11 && 1 <= x10 (2) l3(x16, x17, x18, x19) -> l1(x20, x21, x22, x23) :|: x19 = x23 && x18 = x22 && x17 = x21 && x16 = x20 Arcs: (1) -> (2) (2) -> (1) This digraph is fully evaluated! ---------------------------------------- (5) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (6) Obligation: Rules: l1(x12:0, x13:0, x10:0, x11:0) -> l1(x12:0, x13:0, x10:0 + x11:0, -1 + x11:0) :|: x10:0 > 0 ---------------------------------------- (7) IntTRSUnneededArgumentFilterProof (EQUIVALENT) Some arguments are removed because they cannot influence termination. We removed arguments according to the following replacements: l1(x1, x2, x3, x4) -> l1(x3, x4) ---------------------------------------- (8) Obligation: Rules: l1(x10:0, x11:0) -> l1(x10:0 + x11:0, -1 + x11:0) :|: x10:0 > 0 ---------------------------------------- (9) IRSwTChainingProof (EQUIVALENT) Chaining! ---------------------------------------- (10) Obligation: Rules: l1(x, x1) -> l1(x + 2 * x1 + -1, -2 + x1) :|: TRUE && x >= 1 && x + x1 >= 1 ---------------------------------------- (11) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) l1(x, x1) -> l1(x + 2 * x1 + -1, -2 + x1) :|: TRUE && x >= 1 && x + x1 >= 1 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (12) Obligation: Termination digraph: Nodes: (1) l1(x, x1) -> l1(x + 2 * x1 + -1, -2 + x1) :|: TRUE && x >= 1 && x + x1 >= 1 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (13) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (14) Obligation: Rules: l1(x:0, x1:0) -> l1(x:0 + 2 * x1:0 - 1, -2 + x1:0) :|: x:0 + x1:0 >= 1 && x:0 > 0 ---------------------------------------- (15) IRSwTChainingProof (EQUIVALENT) Chaining! ---------------------------------------- (16) Obligation: Rules: l1(x, x1) -> l1(x + 4 * x1 + -6, -4 + x1) :|: TRUE && x + x1 >= 1 && x >= 1 && x + 3 * x1 >= 4 && x + 2 * x1 >= 2 ---------------------------------------- (17) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) l1(x, x1) -> l1(x + 4 * x1 + -6, -4 + x1) :|: TRUE && x + x1 >= 1 && x >= 1 && x + 3 * x1 >= 4 && x + 2 * x1 >= 2 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (18) Obligation: Termination digraph: Nodes: (1) l1(x, x1) -> l1(x + 4 * x1 + -6, -4 + x1) :|: TRUE && x + x1 >= 1 && x >= 1 && x + 3 * x1 >= 4 && x + 2 * x1 >= 2 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (19) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (20) Obligation: Rules: l1(x:0, x1:0) -> l1(x:0 + 4 * x1:0 - 6, -4 + x1:0) :|: x:0 + 3 * x1:0 >= 4 && x:0 + 2 * x1:0 >= 2 && x:0 + x1:0 >= 1 && x:0 > 0 ---------------------------------------- (21) TempFilterProof (SOUND) Used the following sort dictionary for filtering: l1(INTEGER, INTEGER) Replaced non-predefined constructor symbols by 0. ---------------------------------------- (22) Obligation: Rules: l1(x:0, x1:0) -> l1(c, c1) :|: c1 = -4 + x1:0 && c = x:0 + 4 * x1:0 - 6 && (x:0 + 3 * x1:0 >= 4 && x:0 + 2 * x1:0 >= 2 && x:0 + x1:0 >= 1 && x:0 > 0) ---------------------------------------- (23) PolynomialOrderProcessor (EQUIVALENT) Found the following polynomial interpretation: [l1(x, x1)] = -2 + 2*x + 2*x1 + x1^2 The following rules are decreasing: l1(x:0, x1:0) -> l1(c, c1) :|: c1 = -4 + x1:0 && c = x:0 + 4 * x1:0 - 6 && (x:0 + 3 * x1:0 >= 4 && x:0 + 2 * x1:0 >= 2 && x:0 + x1:0 >= 1 && x:0 > 0) The following rules are bounded: l1(x:0, x1:0) -> l1(c, c1) :|: c1 = -4 + x1:0 && c = x:0 + 4 * x1:0 - 6 && (x:0 + 3 * x1:0 >= 4 && x:0 + 2 * x1:0 >= 2 && x:0 + x1:0 >= 1 && x:0 > 0) ---------------------------------------- (24) YES