MAYBE proof of prog.inttrs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination of the given IRSwT could not be shown: (0) IRSwT (1) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (2) IRSwT (3) IRSwTTerminationDigraphProof [EQUIVALENT, 172 ms] (4) IRSwT (5) IntTRSCompressionProof [EQUIVALENT, 40 ms] (6) IRSwT (7) IRSwTChainingProof [EQUIVALENT, 0 ms] (8) IRSwT (9) IRSwTTerminationDigraphProof [EQUIVALENT, 12 ms] (10) IRSwT (11) IntTRSCompressionProof [EQUIVALENT, 0 ms] (12) IRSwT (13) TempFilterProof [SOUND, 274 ms] (14) IRSwT (15) IRSwTTerminationDigraphProof [EQUIVALENT, 12 ms] (16) IRSwT ---------------------------------------- (0) Obligation: Rules: l0(op1HAT0, op2HAT0) -> l1(op1HATpost, op2HATpost) :|: op2HAT0 = op2HATpost && op1HAT0 = op1HATpost && 0 <= op1HAT0 && 0 <= op2HAT0 && op2HAT0 <= 0 l2(x, x1) -> l3(x2, x3) :|: x3 = -1 + x1 && x2 = 1 + x && 1 <= x1 l3(x4, x5) -> l2(x6, x7) :|: x5 = x7 && x4 = x6 l2(x8, x9) -> l4(x10, x11) :|: x11 = 1 + x9 && x10 = -1 + x8 && 1 <= x8 l4(x12, x13) -> l2(x14, x15) :|: x12 = x14 && x15 = -1 + x13 && 1 <= x13 l4(x16, x17) -> l1(x18, x19) :|: x17 = x19 && x16 = x18 l1(x20, x21) -> l4(x22, x23) :|: x23 = 1 + x21 && x22 = -1 + x20 && 1 <= x20 l5(x24, x25) -> l0(x26, x27) :|: x25 = x27 && x24 = x26 Start term: l5(op1HAT0, op2HAT0) ---------------------------------------- (1) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (2) Obligation: Rules: l0(op1HAT0, op2HAT0) -> l1(op1HATpost, op2HATpost) :|: op2HAT0 = op2HATpost && op1HAT0 = op1HATpost && 0 <= op1HAT0 && 0 <= op2HAT0 && op2HAT0 <= 0 l2(x, x1) -> l3(x2, x3) :|: x3 = -1 + x1 && x2 = 1 + x && 1 <= x1 l3(x4, x5) -> l2(x6, x7) :|: x5 = x7 && x4 = x6 l2(x8, x9) -> l4(x10, x11) :|: x11 = 1 + x9 && x10 = -1 + x8 && 1 <= x8 l4(x12, x13) -> l2(x14, x15) :|: x12 = x14 && x15 = -1 + x13 && 1 <= x13 l4(x16, x17) -> l1(x18, x19) :|: x17 = x19 && x16 = x18 l1(x20, x21) -> l4(x22, x23) :|: x23 = 1 + x21 && x22 = -1 + x20 && 1 <= x20 l5(x24, x25) -> l0(x26, x27) :|: x25 = x27 && x24 = x26 Start term: l5(op1HAT0, op2HAT0) ---------------------------------------- (3) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) l0(op1HAT0, op2HAT0) -> l1(op1HATpost, op2HATpost) :|: op2HAT0 = op2HATpost && op1HAT0 = op1HATpost && 0 <= op1HAT0 && 0 <= op2HAT0 && op2HAT0 <= 0 (2) l2(x, x1) -> l3(x2, x3) :|: x3 = -1 + x1 && x2 = 1 + x && 1 <= x1 (3) l3(x4, x5) -> l2(x6, x7) :|: x5 = x7 && x4 = x6 (4) l2(x8, x9) -> l4(x10, x11) :|: x11 = 1 + x9 && x10 = -1 + x8 && 1 <= x8 (5) l4(x12, x13) -> l2(x14, x15) :|: x12 = x14 && x15 = -1 + x13 && 1 <= x13 (6) l4(x16, x17) -> l1(x18, x19) :|: x17 = x19 && x16 = x18 (7) l1(x20, x21) -> l4(x22, x23) :|: x23 = 1 + x21 && x22 = -1 + x20 && 1 <= x20 (8) l5(x24, x25) -> l0(x26, x27) :|: x25 = x27 && x24 = x26 Arcs: (1) -> (7) (2) -> (3) (3) -> (2), (4) (4) -> (5), (6) (5) -> (2), (4) (6) -> (7) (7) -> (5), (6) (8) -> (1) This digraph is fully evaluated! ---------------------------------------- (4) Obligation: Termination digraph: Nodes: (1) l1(x20, x21) -> l4(x22, x23) :|: x23 = 1 + x21 && x22 = -1 + x20 && 1 <= x20 (2) l4(x16, x17) -> l1(x18, x19) :|: x17 = x19 && x16 = x18 (3) l2(x8, x9) -> l4(x10, x11) :|: x11 = 1 + x9 && x10 = -1 + x8 && 1 <= x8 (4) l3(x4, x5) -> l2(x6, x7) :|: x5 = x7 && x4 = x6 (5) l2(x, x1) -> l3(x2, x3) :|: x3 = -1 + x1 && x2 = 1 + x && 1 <= x1 (6) l4(x12, x13) -> l2(x14, x15) :|: x12 = x14 && x15 = -1 + x13 && 1 <= x13 Arcs: (1) -> (2), (6) (2) -> (1) (3) -> (2), (6) (4) -> (3), (5) (5) -> (4) (6) -> (3), (5) This digraph is fully evaluated! ---------------------------------------- (5) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (6) Obligation: Rules: l2(x:0, x1:0) -> l2(1 + x:0, -1 + x1:0) :|: x1:0 > 0 l4(x12:0, x13:0) -> l2(x12:0, -1 + x13:0) :|: x13:0 > 0 l2(x8:0, x9:0) -> l4(-1 + x8:0, 1 + x9:0) :|: x8:0 > 0 l4(x16:0, x17:0) -> l4(-1 + x16:0, 1 + x17:0) :|: x16:0 > 0 ---------------------------------------- (7) IRSwTChainingProof (EQUIVALENT) Chaining! ---------------------------------------- (8) Obligation: Rules: l2(x, x1) -> l2(2 + x, -2 + x1) :|: TRUE && x1 >= 2 l4(x12:0, x13:0) -> l2(x12:0, -1 + x13:0) :|: x13:0 > 0 l2(x8:0, x9:0) -> l4(-1 + x8:0, 1 + x9:0) :|: x8:0 > 0 l2(x8, x9) -> l4(x8, x9) :|: TRUE && x9 >= 1 && x8 >= 0 l4(x16:0, x17:0) -> l4(-1 + x16:0, 1 + x17:0) :|: x16:0 > 0 ---------------------------------------- (9) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) l2(x, x1) -> l2(2 + x, -2 + x1) :|: TRUE && x1 >= 2 (2) l4(x12:0, x13:0) -> l2(x12:0, -1 + x13:0) :|: x13:0 > 0 (3) l2(x8:0, x9:0) -> l4(-1 + x8:0, 1 + x9:0) :|: x8:0 > 0 (4) l2(x8, x9) -> l4(x8, x9) :|: TRUE && x9 >= 1 && x8 >= 0 (5) l4(x16:0, x17:0) -> l4(-1 + x16:0, 1 + x17:0) :|: x16:0 > 0 Arcs: (1) -> (1), (3), (4) (2) -> (1), (3), (4) (3) -> (2), (5) (4) -> (2), (5) (5) -> (2), (5) This digraph is fully evaluated! ---------------------------------------- (10) Obligation: Termination digraph: Nodes: (1) l2(x, x1) -> l2(2 + x, -2 + x1) :|: TRUE && x1 >= 2 (2) l4(x12:0, x13:0) -> l2(x12:0, -1 + x13:0) :|: x13:0 > 0 (3) l4(x16:0, x17:0) -> l4(-1 + x16:0, 1 + x17:0) :|: x16:0 > 0 (4) l2(x8, x9) -> l4(x8, x9) :|: TRUE && x9 >= 1 && x8 >= 0 (5) l2(x8:0, x9:0) -> l4(-1 + x8:0, 1 + x9:0) :|: x8:0 > 0 Arcs: (1) -> (1), (4), (5) (2) -> (1), (4), (5) (3) -> (2), (3) (4) -> (2), (3) (5) -> (2), (3) This digraph is fully evaluated! ---------------------------------------- (11) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (12) Obligation: Rules: l4(x16:0:0, x17:0:0) -> l4(-1 + x16:0:0, 1 + x17:0:0) :|: x16:0:0 > 0 l2(x8:0, x9:0) -> l4(x8:0, x9:0) :|: x8:0 > -1 && x9:0 > 0 l2(x:0, x1:0) -> l2(2 + x:0, -2 + x1:0) :|: x1:0 > 1 l4(x12:0:0, x13:0:0) -> l2(x12:0:0, -1 + x13:0:0) :|: x13:0:0 > 0 l2(x8:0:0, x9:0:0) -> l4(-1 + x8:0:0, 1 + x9:0:0) :|: x8:0:0 > 0 ---------------------------------------- (13) TempFilterProof (SOUND) Used the following sort dictionary for filtering: l4(VARIABLE, VARIABLE) l2(VARIABLE, VARIABLE) Replaced non-predefined constructor symbols by 0.The following proof was generated: # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination of the given IntTRS could not be shown: - IntTRS - PolynomialOrderProcessor Rules: l4(x16:0:0, x17:0:0) -> l4(c, c1) :|: c1 = 1 + x17:0:0 && c = -1 + x16:0:0 && x16:0:0 > 0 l2(x8:0, x9:0) -> l4(x8:0, x9:0) :|: x8:0 > -1 && x9:0 > 0 l2(x:0, x1:0) -> l2(c2, c3) :|: c3 = -2 + x1:0 && c2 = 2 + x:0 && x1:0 > 1 l4(x12:0:0, x13:0:0) -> l2(x12:0:0, c4) :|: c4 = -1 + x13:0:0 && x13:0:0 > 0 l2(x8:0:0, x9:0:0) -> l4(c5, c6) :|: c6 = 1 + x9:0:0 && c5 = -1 + x8:0:0 && x8:0:0 > 0 Found the following polynomial interpretation: [l4(x, x1)] = -1 + x + x1 [l2(x2, x3)] = -1 + x2 + x3 The following rules are decreasing: l4(x12:0:0, x13:0:0) -> l2(x12:0:0, c4) :|: c4 = -1 + x13:0:0 && x13:0:0 > 0 The following rules are bounded: l2(x8:0, x9:0) -> l4(x8:0, x9:0) :|: x8:0 > -1 && x9:0 > 0 - IntTRS - PolynomialOrderProcessor - AND - IntTRS - IntTRS - PolynomialOrderProcessor - IntTRS Rules: l4(x16:0:0, x17:0:0) -> l4(c, c1) :|: c1 = 1 + x17:0:0 && c = -1 + x16:0:0 && x16:0:0 > 0 l2(x8:0, x9:0) -> l4(x8:0, x9:0) :|: x8:0 > -1 && x9:0 > 0 l2(x:0, x1:0) -> l2(c2, c3) :|: c3 = -2 + x1:0 && c2 = 2 + x:0 && x1:0 > 1 l2(x8:0:0, x9:0:0) -> l4(c5, c6) :|: c6 = 1 + x9:0:0 && c5 = -1 + x8:0:0 && x8:0:0 > 0 Found the following polynomial interpretation: [l4(x, x1)] = -2 + x + x1 [l2(x2, x3)] = -1 + x2 + x3 The following rules are decreasing: l2(x8:0, x9:0) -> l4(x8:0, x9:0) :|: x8:0 > -1 && x9:0 > 0 l2(x8:0:0, x9:0:0) -> l4(c5, c6) :|: c6 = 1 + x9:0:0 && c5 = -1 + x8:0:0 && x8:0:0 > 0 The following rules are bounded: l2(x8:0, x9:0) -> l4(x8:0, x9:0) :|: x8:0 > -1 && x9:0 > 0 - IntTRS - PolynomialOrderProcessor - AND - IntTRS - IntTRS - PolynomialOrderProcessor - IntTRS - RankingReductionPairProof - IntTRS Rules: l4(x16:0:0, x17:0:0) -> l4(c, c1) :|: c1 = 1 + x17:0:0 && c = -1 + x16:0:0 && x16:0:0 > 0 l2(x:0, x1:0) -> l2(c2, c3) :|: c3 = -2 + x1:0 && c2 = 2 + x:0 && x1:0 > 1 l2(x8:0:0, x9:0:0) -> l4(c5, c6) :|: c6 = 1 + x9:0:0 && c5 = -1 + x8:0:0 && x8:0:0 > 0 Interpretation: [ l4 ] = 0 [ l2 ] = 1 The following rules are decreasing: l2(x8:0:0, x9:0:0) -> l4(c5, c6) :|: c6 = 1 + x9:0:0 && c5 = -1 + x8:0:0 && x8:0:0 > 0 The following rules are bounded: l4(x16:0:0, x17:0:0) -> l4(c, c1) :|: c1 = 1 + x17:0:0 && c = -1 + x16:0:0 && x16:0:0 > 0 l2(x:0, x1:0) -> l2(c2, c3) :|: c3 = -2 + x1:0 && c2 = 2 + x:0 && x1:0 > 1 l2(x8:0:0, x9:0:0) -> l4(c5, c6) :|: c6 = 1 + x9:0:0 && c5 = -1 + x8:0:0 && x8:0:0 > 0 - IntTRS - PolynomialOrderProcessor - AND - IntTRS - IntTRS - PolynomialOrderProcessor - IntTRS - RankingReductionPairProof - IntTRS - RankingReductionPairProof - IntTRS Rules: l4(x16:0:0, x17:0:0) -> l4(c, c1) :|: c1 = 1 + x17:0:0 && c = -1 + x16:0:0 && x16:0:0 > 0 l2(x:0, x1:0) -> l2(c2, c3) :|: c3 = -2 + x1:0 && c2 = 2 + x:0 && x1:0 > 1 Interpretation: [ l4 ] = l4_1 [ l2 ] = 1/2*l2_2 The following rules are decreasing: l4(x16:0:0, x17:0:0) -> l4(c, c1) :|: c1 = 1 + x17:0:0 && c = -1 + x16:0:0 && x16:0:0 > 0 l2(x:0, x1:0) -> l2(c2, c3) :|: c3 = -2 + x1:0 && c2 = 2 + x:0 && x1:0 > 1 The following rules are bounded: l4(x16:0:0, x17:0:0) -> l4(c, c1) :|: c1 = 1 + x17:0:0 && c = -1 + x16:0:0 && x16:0:0 > 0 l2(x:0, x1:0) -> l2(c2, c3) :|: c3 = -2 + x1:0 && c2 = 2 + x:0 && x1:0 > 1 - IntTRS - PolynomialOrderProcessor - AND - IntTRS - IntTRS - IntTRS Rules: l4(x16:0:0, x17:0:0) -> l4(c, c1) :|: c1 = 1 + x17:0:0 && c = -1 + x16:0:0 && x16:0:0 > 0 l2(x:0, x1:0) -> l2(c2, c3) :|: c3 = -2 + x1:0 && c2 = 2 + x:0 && x1:0 > 1 l4(x12:0:0, x13:0:0) -> l2(x12:0:0, c4) :|: c4 = -1 + x13:0:0 && x13:0:0 > 0 l2(x8:0:0, x9:0:0) -> l4(c5, c6) :|: c6 = 1 + x9:0:0 && c5 = -1 + x8:0:0 && x8:0:0 > 0 ---------------------------------------- (14) Obligation: Rules: l4(x16:0:0, x17:0:0) -> l4(-1 + x16:0:0, 1 + x17:0:0) :|: x16:0:0 > 0 l2(x:0, x1:0) -> l2(2 + x:0, -2 + x1:0) :|: x1:0 > 1 l4(x12:0:0, x13:0:0) -> l2(x12:0:0, -1 + x13:0:0) :|: x13:0:0 > 0 l2(x8:0:0, x9:0:0) -> l4(-1 + x8:0:0, 1 + x9:0:0) :|: x8:0:0 > 0 ---------------------------------------- (15) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) l4(x16:0:0, x17:0:0) -> l4(-1 + x16:0:0, 1 + x17:0:0) :|: x16:0:0 > 0 (2) l2(x:0, x1:0) -> l2(2 + x:0, -2 + x1:0) :|: x1:0 > 1 (3) l4(x12:0:0, x13:0:0) -> l2(x12:0:0, -1 + x13:0:0) :|: x13:0:0 > 0 (4) l2(x8:0:0, x9:0:0) -> l4(-1 + x8:0:0, 1 + x9:0:0) :|: x8:0:0 > 0 Arcs: (1) -> (1), (3) (2) -> (2), (4) (3) -> (2), (4) (4) -> (1), (3) This digraph is fully evaluated! ---------------------------------------- (16) Obligation: Termination digraph: Nodes: (1) l4(x16:0:0, x17:0:0) -> l4(-1 + x16:0:0, 1 + x17:0:0) :|: x16:0:0 > 0 (2) l2(x8:0:0, x9:0:0) -> l4(-1 + x8:0:0, 1 + x9:0:0) :|: x8:0:0 > 0 (3) l2(x:0, x1:0) -> l2(2 + x:0, -2 + x1:0) :|: x1:0 > 1 (4) l4(x12:0:0, x13:0:0) -> l2(x12:0:0, -1 + x13:0:0) :|: x13:0:0 > 0 Arcs: (1) -> (1), (4) (2) -> (1), (4) (3) -> (2), (3) (4) -> (2), (3) This digraph is fully evaluated!