YES proof of prog.inttrs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination of the given IRSwT could be proven: (0) IRSwT (1) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (2) IRSwT (3) IRSwTTerminationDigraphProof [EQUIVALENT, 206 ms] (4) IRSwT (5) IntTRSCompressionProof [EQUIVALENT, 0 ms] (6) IRSwT (7) IRSwTChainingProof [EQUIVALENT, 0 ms] (8) IRSwT (9) IRSwTTerminationDigraphProof [EQUIVALENT, 2 ms] (10) AND (11) IRSwT (12) TempFilterProof [SOUND, 6 ms] (13) IntTRS (14) RankingReductionPairProof [EQUIVALENT, 0 ms] (15) YES (16) IRSwT (17) IntTRSCompressionProof [EQUIVALENT, 0 ms] (18) IRSwT (19) TempFilterProof [SOUND, 3 ms] (20) IntTRS (21) PolynomialOrderProcessor [EQUIVALENT, 0 ms] (22) YES ---------------------------------------- (0) Obligation: Rules: l0(c0HAT0, deltaextHAT0, wntHAT0) -> l1(c0HATpost, deltaextHATpost, wntHATpost) :|: wntHAT0 = wntHATpost && c0HAT0 = c0HATpost && deltaextHATpost = -1 + deltaextHAT0 && 1 + c0HAT0 + wntHAT0 <= -1 + 2 * deltaextHAT0 l1(x, x1, x2) -> l0(x3, x4, x5) :|: x2 = x5 && x1 = x4 && x = x3 l0(x6, x7, x8) -> l2(x9, x10, x11) :|: x8 = x11 && x6 = x9 && x10 = 1 + x7 && 1 + 2 * x7 <= x6 + x8 l2(x12, x13, x14) -> l0(x15, x16, x17) :|: x14 = x17 && x13 = x16 && x12 = x15 l3(x18, x19, x20) -> l0(x21, x22, x23) :|: x20 = x23 && x19 = x22 && x21 = 2 && x19 <= 3 && 0 <= x19 && x20 <= 3 && 0 <= x20 l4(x24, x25, x26) -> l3(x27, x28, x29) :|: x26 = x29 && x25 = x28 && x24 = x27 Start term: l4(c0HAT0, deltaextHAT0, wntHAT0) ---------------------------------------- (1) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (2) Obligation: Rules: l0(c0HAT0, deltaextHAT0, wntHAT0) -> l1(c0HATpost, deltaextHATpost, wntHATpost) :|: wntHAT0 = wntHATpost && c0HAT0 = c0HATpost && deltaextHATpost = -1 + deltaextHAT0 && 1 + c0HAT0 + wntHAT0 <= -1 + 2 * deltaextHAT0 l1(x, x1, x2) -> l0(x3, x4, x5) :|: x2 = x5 && x1 = x4 && x = x3 l0(x6, x7, x8) -> l2(x9, x10, x11) :|: x8 = x11 && x6 = x9 && x10 = 1 + x7 && 1 + 2 * x7 <= x6 + x8 l2(x12, x13, x14) -> l0(x15, x16, x17) :|: x14 = x17 && x13 = x16 && x12 = x15 l3(x18, x19, x20) -> l0(x21, x22, x23) :|: x20 = x23 && x19 = x22 && x21 = 2 && x19 <= 3 && 0 <= x19 && x20 <= 3 && 0 <= x20 l4(x24, x25, x26) -> l3(x27, x28, x29) :|: x26 = x29 && x25 = x28 && x24 = x27 Start term: l4(c0HAT0, deltaextHAT0, wntHAT0) ---------------------------------------- (3) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) l0(c0HAT0, deltaextHAT0, wntHAT0) -> l1(c0HATpost, deltaextHATpost, wntHATpost) :|: wntHAT0 = wntHATpost && c0HAT0 = c0HATpost && deltaextHATpost = -1 + deltaextHAT0 && 1 + c0HAT0 + wntHAT0 <= -1 + 2 * deltaextHAT0 (2) l1(x, x1, x2) -> l0(x3, x4, x5) :|: x2 = x5 && x1 = x4 && x = x3 (3) l0(x6, x7, x8) -> l2(x9, x10, x11) :|: x8 = x11 && x6 = x9 && x10 = 1 + x7 && 1 + 2 * x7 <= x6 + x8 (4) l2(x12, x13, x14) -> l0(x15, x16, x17) :|: x14 = x17 && x13 = x16 && x12 = x15 (5) l3(x18, x19, x20) -> l0(x21, x22, x23) :|: x20 = x23 && x19 = x22 && x21 = 2 && x19 <= 3 && 0 <= x19 && x20 <= 3 && 0 <= x20 (6) l4(x24, x25, x26) -> l3(x27, x28, x29) :|: x26 = x29 && x25 = x28 && x24 = x27 Arcs: (1) -> (2) (2) -> (1), (3) (3) -> (4) (4) -> (1), (3) (5) -> (1), (3) (6) -> (5) This digraph is fully evaluated! ---------------------------------------- (4) Obligation: Termination digraph: Nodes: (1) l0(c0HAT0, deltaextHAT0, wntHAT0) -> l1(c0HATpost, deltaextHATpost, wntHATpost) :|: wntHAT0 = wntHATpost && c0HAT0 = c0HATpost && deltaextHATpost = -1 + deltaextHAT0 && 1 + c0HAT0 + wntHAT0 <= -1 + 2 * deltaextHAT0 (2) l2(x12, x13, x14) -> l0(x15, x16, x17) :|: x14 = x17 && x13 = x16 && x12 = x15 (3) l0(x6, x7, x8) -> l2(x9, x10, x11) :|: x8 = x11 && x6 = x9 && x10 = 1 + x7 && 1 + 2 * x7 <= x6 + x8 (4) l1(x, x1, x2) -> l0(x3, x4, x5) :|: x2 = x5 && x1 = x4 && x = x3 Arcs: (1) -> (4) (2) -> (1), (3) (3) -> (2) (4) -> (1), (3) This digraph is fully evaluated! ---------------------------------------- (5) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (6) Obligation: Rules: l0(x15:0, x7:0, x11:0) -> l0(x15:0, 1 + x7:0, x11:0) :|: x15:0 + x11:0 >= 1 + 2 * x7:0 l0(c0HAT0:0, deltaextHAT0:0, wntHAT0:0) -> l0(c0HAT0:0, -1 + deltaextHAT0:0, wntHAT0:0) :|: 1 + c0HAT0:0 + wntHAT0:0 <= -1 + 2 * deltaextHAT0:0 ---------------------------------------- (7) IRSwTChainingProof (EQUIVALENT) Chaining! ---------------------------------------- (8) Obligation: Rules: l0(x, x1, x2) -> l0(x, 2 + x1, x2) :|: TRUE && x + x2 + -2 * x1 >= 3 l0(c0HAT0:0, deltaextHAT0:0, wntHAT0:0) -> l0(c0HAT0:0, -1 + deltaextHAT0:0, wntHAT0:0) :|: 1 + c0HAT0:0 + wntHAT0:0 <= -1 + 2 * deltaextHAT0:0 ---------------------------------------- (9) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) l0(x, x1, x2) -> l0(x, 2 + x1, x2) :|: TRUE && x + x2 + -2 * x1 >= 3 (2) l0(c0HAT0:0, deltaextHAT0:0, wntHAT0:0) -> l0(c0HAT0:0, -1 + deltaextHAT0:0, wntHAT0:0) :|: 1 + c0HAT0:0 + wntHAT0:0 <= -1 + 2 * deltaextHAT0:0 Arcs: (1) -> (1) (2) -> (2) This digraph is fully evaluated! ---------------------------------------- (10) Complex Obligation (AND) ---------------------------------------- (11) Obligation: Termination digraph: Nodes: (1) l0(c0HAT0:0, deltaextHAT0:0, wntHAT0:0) -> l0(c0HAT0:0, -1 + deltaextHAT0:0, wntHAT0:0) :|: 1 + c0HAT0:0 + wntHAT0:0 <= -1 + 2 * deltaextHAT0:0 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (12) TempFilterProof (SOUND) Used the following sort dictionary for filtering: l0(INTEGER, INTEGER, INTEGER) Replaced non-predefined constructor symbols by 0. ---------------------------------------- (13) Obligation: Rules: l0(c0HAT0:0, deltaextHAT0:0, wntHAT0:0) -> l0(c0HAT0:0, c, wntHAT0:0) :|: c = -1 + deltaextHAT0:0 && 1 + c0HAT0:0 + wntHAT0:0 <= -1 + 2 * deltaextHAT0:0 ---------------------------------------- (14) RankingReductionPairProof (EQUIVALENT) Interpretation: [ l0 ] = -1/2*l0_1 + -1/2*l0_3 + l0_2 The following rules are decreasing: l0(c0HAT0:0, deltaextHAT0:0, wntHAT0:0) -> l0(c0HAT0:0, c, wntHAT0:0) :|: c = -1 + deltaextHAT0:0 && 1 + c0HAT0:0 + wntHAT0:0 <= -1 + 2 * deltaextHAT0:0 The following rules are bounded: l0(c0HAT0:0, deltaextHAT0:0, wntHAT0:0) -> l0(c0HAT0:0, c, wntHAT0:0) :|: c = -1 + deltaextHAT0:0 && 1 + c0HAT0:0 + wntHAT0:0 <= -1 + 2 * deltaextHAT0:0 ---------------------------------------- (15) YES ---------------------------------------- (16) Obligation: Termination digraph: Nodes: (1) l0(x, x1, x2) -> l0(x, 2 + x1, x2) :|: TRUE && x + x2 + -2 * x1 >= 3 Arcs: (1) -> (1) This digraph is fully evaluated! ---------------------------------------- (17) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (18) Obligation: Rules: l0(x:0, x1:0, x2:0) -> l0(x:0, 2 + x1:0, x2:0) :|: x:0 + x2:0 + -2 * x1:0 >= 3 ---------------------------------------- (19) TempFilterProof (SOUND) Used the following sort dictionary for filtering: l0(INTEGER, INTEGER, INTEGER) Replaced non-predefined constructor symbols by 0. ---------------------------------------- (20) Obligation: Rules: l0(x:0, x1:0, x2:0) -> l0(x:0, c, x2:0) :|: c = 2 + x1:0 && x:0 + x2:0 + -2 * x1:0 >= 3 ---------------------------------------- (21) PolynomialOrderProcessor (EQUIVALENT) Found the following polynomial interpretation: [l0(x, x1, x2)] = -1 + x - 2*x1 + x2 The following rules are decreasing: l0(x:0, x1:0, x2:0) -> l0(x:0, c, x2:0) :|: c = 2 + x1:0 && x:0 + x2:0 + -2 * x1:0 >= 3 The following rules are bounded: l0(x:0, x1:0, x2:0) -> l0(x:0, c, x2:0) :|: c = 2 + x1:0 && x:0 + x2:0 + -2 * x1:0 >= 3 ---------------------------------------- (22) YES