YES proof of prog.inttrs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination of the given IRSwT could be proven: (0) IRSwT (1) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (2) IRSwT (3) IRSwTTerminationDigraphProof [EQUIVALENT, 132 ms] (4) IRSwT (5) IntTRSCompressionProof [EQUIVALENT, 0 ms] (6) IRSwT (7) TempFilterProof [SOUND, 45 ms] (8) IntTRS (9) PolynomialOrderProcessor [EQUIVALENT, 0 ms] (10) IntTRS (11) PolynomialOrderProcessor [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: Rules: l0(xHAT0, yHAT0) -> l1(xHATpost, yHATpost) :|: xHAT0 = xHATpost && yHATpost = -1 + yHAT0 && 1 <= yHAT0 l1(x, x1) -> l0(x2, x3) :|: x1 = x3 && x = x2 l0(x4, x5) -> l2(x6, x7) :|: x5 = x7 && x4 = x6 && x5 <= 0 l2(x8, x9) -> l0(x10, x11) :|: x11 = x11 && x10 = -1 + x8 && 1 <= x8 l3(x12, x13) -> l2(x14, x15) :|: x13 = x15 && x12 = x14 l4(x16, x17) -> l3(x18, x19) :|: x17 = x19 && x16 = x18 Start term: l4(xHAT0, yHAT0) ---------------------------------------- (1) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (2) Obligation: Rules: l0(xHAT0, yHAT0) -> l1(xHATpost, yHATpost) :|: xHAT0 = xHATpost && yHATpost = -1 + yHAT0 && 1 <= yHAT0 l1(x, x1) -> l0(x2, x3) :|: x1 = x3 && x = x2 l0(x4, x5) -> l2(x6, x7) :|: x5 = x7 && x4 = x6 && x5 <= 0 l2(x8, x9) -> l0(x10, x11) :|: x11 = x11 && x10 = -1 + x8 && 1 <= x8 l3(x12, x13) -> l2(x14, x15) :|: x13 = x15 && x12 = x14 l4(x16, x17) -> l3(x18, x19) :|: x17 = x19 && x16 = x18 Start term: l4(xHAT0, yHAT0) ---------------------------------------- (3) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) l0(xHAT0, yHAT0) -> l1(xHATpost, yHATpost) :|: xHAT0 = xHATpost && yHATpost = -1 + yHAT0 && 1 <= yHAT0 (2) l1(x, x1) -> l0(x2, x3) :|: x1 = x3 && x = x2 (3) l0(x4, x5) -> l2(x6, x7) :|: x5 = x7 && x4 = x6 && x5 <= 0 (4) l2(x8, x9) -> l0(x10, x11) :|: x11 = x11 && x10 = -1 + x8 && 1 <= x8 (5) l3(x12, x13) -> l2(x14, x15) :|: x13 = x15 && x12 = x14 (6) l4(x16, x17) -> l3(x18, x19) :|: x17 = x19 && x16 = x18 Arcs: (1) -> (2) (2) -> (1), (3) (3) -> (4) (4) -> (1), (3) (5) -> (4) (6) -> (5) This digraph is fully evaluated! ---------------------------------------- (4) Obligation: Termination digraph: Nodes: (1) l0(xHAT0, yHAT0) -> l1(xHATpost, yHATpost) :|: xHAT0 = xHATpost && yHATpost = -1 + yHAT0 && 1 <= yHAT0 (2) l2(x8, x9) -> l0(x10, x11) :|: x11 = x11 && x10 = -1 + x8 && 1 <= x8 (3) l0(x4, x5) -> l2(x6, x7) :|: x5 = x7 && x4 = x6 && x5 <= 0 (4) l1(x, x1) -> l0(x2, x3) :|: x1 = x3 && x = x2 Arcs: (1) -> (4) (2) -> (1), (3) (3) -> (2) (4) -> (1), (3) This digraph is fully evaluated! ---------------------------------------- (5) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (6) Obligation: Rules: l0(x4:0, x5:0) -> l0(-1 + x4:0, x11:0) :|: x5:0 < 1 && x4:0 > 0 l0(x2:0, yHAT0:0) -> l0(x2:0, -1 + yHAT0:0) :|: yHAT0:0 > 0 ---------------------------------------- (7) TempFilterProof (SOUND) Used the following sort dictionary for filtering: l0(VARIABLE, VARIABLE) Replaced non-predefined constructor symbols by 0. ---------------------------------------- (8) Obligation: Rules: l0(x4:0, x5:0) -> l0(c, x11:0) :|: c = -1 + x4:0 && (x5:0 < 1 && x4:0 > 0) l0(x2:0, yHAT0:0) -> l0(x2:0, c1) :|: c1 = -1 + yHAT0:0 && yHAT0:0 > 0 ---------------------------------------- (9) PolynomialOrderProcessor (EQUIVALENT) Found the following polynomial interpretation: [l0(x, x1)] = -1 + x The following rules are decreasing: l0(x4:0, x5:0) -> l0(c, x11:0) :|: c = -1 + x4:0 && (x5:0 < 1 && x4:0 > 0) The following rules are bounded: l0(x4:0, x5:0) -> l0(c, x11:0) :|: c = -1 + x4:0 && (x5:0 < 1 && x4:0 > 0) ---------------------------------------- (10) Obligation: Rules: l0(x2:0, yHAT0:0) -> l0(x2:0, c1) :|: c1 = -1 + yHAT0:0 && yHAT0:0 > 0 ---------------------------------------- (11) PolynomialOrderProcessor (EQUIVALENT) Found the following polynomial interpretation: [l0(x, x1)] = x1 The following rules are decreasing: l0(x2:0, yHAT0:0) -> l0(x2:0, c1) :|: c1 = -1 + yHAT0:0 && yHAT0:0 > 0 The following rules are bounded: l0(x2:0, yHAT0:0) -> l0(x2:0, c1) :|: c1 = -1 + yHAT0:0 && yHAT0:0 > 0 ---------------------------------------- (12) YES