YES proof of prog.inttrs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination of the given IRSwT could be proven: (0) IRSwT (1) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (2) IRSwT (3) IRSwTTerminationDigraphProof [EQUIVALENT, 142 ms] (4) IRSwT (5) IntTRSCompressionProof [EQUIVALENT, 0 ms] (6) IRSwT (7) TempFilterProof [SOUND, 48 ms] (8) IntTRS (9) PolynomialOrderProcessor [EQUIVALENT, 9 ms] (10) IntTRS (11) PolynomialOrderProcessor [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: Rules: l0(xHAT0, yHAT0) -> l1(xHATpost, yHATpost) :|: yHAT0 = yHATpost && xHAT0 = xHATpost && 1 <= yHAT0 && 1 <= xHAT0 l1(x, x1) -> l0(x2, x3) :|: x = x2 && x3 = -1 + x1 l1(x4, x5) -> l0(x6, x7) :|: x5 = x7 && x6 = -1 + x4 l2(x8, x9) -> l1(x10, x11) :|: x9 = x11 && x8 = x10 && 1 <= x9 && 1 <= x8 l3(x12, x13) -> l2(x14, x15) :|: x13 = x15 && x12 = x14 Start term: l3(xHAT0, yHAT0) ---------------------------------------- (1) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (2) Obligation: Rules: l0(xHAT0, yHAT0) -> l1(xHATpost, yHATpost) :|: yHAT0 = yHATpost && xHAT0 = xHATpost && 1 <= yHAT0 && 1 <= xHAT0 l1(x, x1) -> l0(x2, x3) :|: x = x2 && x3 = -1 + x1 l1(x4, x5) -> l0(x6, x7) :|: x5 = x7 && x6 = -1 + x4 l2(x8, x9) -> l1(x10, x11) :|: x9 = x11 && x8 = x10 && 1 <= x9 && 1 <= x8 l3(x12, x13) -> l2(x14, x15) :|: x13 = x15 && x12 = x14 Start term: l3(xHAT0, yHAT0) ---------------------------------------- (3) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) l0(xHAT0, yHAT0) -> l1(xHATpost, yHATpost) :|: yHAT0 = yHATpost && xHAT0 = xHATpost && 1 <= yHAT0 && 1 <= xHAT0 (2) l1(x, x1) -> l0(x2, x3) :|: x = x2 && x3 = -1 + x1 (3) l1(x4, x5) -> l0(x6, x7) :|: x5 = x7 && x6 = -1 + x4 (4) l2(x8, x9) -> l1(x10, x11) :|: x9 = x11 && x8 = x10 && 1 <= x9 && 1 <= x8 (5) l3(x12, x13) -> l2(x14, x15) :|: x13 = x15 && x12 = x14 Arcs: (1) -> (2), (3) (2) -> (1) (3) -> (1) (4) -> (2), (3) (5) -> (4) This digraph is fully evaluated! ---------------------------------------- (4) Obligation: Termination digraph: Nodes: (1) l0(xHAT0, yHAT0) -> l1(xHATpost, yHATpost) :|: yHAT0 = yHATpost && xHAT0 = xHATpost && 1 <= yHAT0 && 1 <= xHAT0 (2) l1(x4, x5) -> l0(x6, x7) :|: x5 = x7 && x6 = -1 + x4 (3) l1(x, x1) -> l0(x2, x3) :|: x = x2 && x3 = -1 + x1 Arcs: (1) -> (2), (3) (2) -> (1) (3) -> (1) This digraph is fully evaluated! ---------------------------------------- (5) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (6) Obligation: Rules: l0(xHAT0:0, x7:0) -> l0(-1 + xHAT0:0, x7:0) :|: xHAT0:0 > 0 && x7:0 > 0 l0(x2:0, yHAT0:0) -> l0(x2:0, -1 + yHAT0:0) :|: x2:0 > 0 && yHAT0:0 > 0 ---------------------------------------- (7) TempFilterProof (SOUND) Used the following sort dictionary for filtering: l0(INTEGER, INTEGER) Replaced non-predefined constructor symbols by 0. ---------------------------------------- (8) Obligation: Rules: l0(xHAT0:0, x7:0) -> l0(c, x7:0) :|: c = -1 + xHAT0:0 && (xHAT0:0 > 0 && x7:0 > 0) l0(x2:0, yHAT0:0) -> l0(x2:0, c1) :|: c1 = -1 + yHAT0:0 && (x2:0 > 0 && yHAT0:0 > 0) ---------------------------------------- (9) PolynomialOrderProcessor (EQUIVALENT) Found the following polynomial interpretation: [l0(x, x1)] = -1 + x The following rules are decreasing: l0(xHAT0:0, x7:0) -> l0(c, x7:0) :|: c = -1 + xHAT0:0 && (xHAT0:0 > 0 && x7:0 > 0) The following rules are bounded: l0(xHAT0:0, x7:0) -> l0(c, x7:0) :|: c = -1 + xHAT0:0 && (xHAT0:0 > 0 && x7:0 > 0) l0(x2:0, yHAT0:0) -> l0(x2:0, c1) :|: c1 = -1 + yHAT0:0 && (x2:0 > 0 && yHAT0:0 > 0) ---------------------------------------- (10) Obligation: Rules: l0(x2:0, yHAT0:0) -> l0(x2:0, c1) :|: c1 = -1 + yHAT0:0 && (x2:0 > 0 && yHAT0:0 > 0) ---------------------------------------- (11) PolynomialOrderProcessor (EQUIVALENT) Found the following polynomial interpretation: [l0(x, x1)] = x1 The following rules are decreasing: l0(x2:0, yHAT0:0) -> l0(x2:0, c1) :|: c1 = -1 + yHAT0:0 && (x2:0 > 0 && yHAT0:0 > 0) The following rules are bounded: l0(x2:0, yHAT0:0) -> l0(x2:0, c1) :|: c1 = -1 + yHAT0:0 && (x2:0 > 0 && yHAT0:0 > 0) ---------------------------------------- (12) YES