YES proof of prog.inttrs # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty Termination of the given IRSwT could be proven: (0) IRSwT (1) IRSFormatTransformerProof [EQUIVALENT, 0 ms] (2) IRSwT (3) IRSwTTerminationDigraphProof [EQUIVALENT, 234 ms] (4) IRSwT (5) IntTRSCompressionProof [EQUIVALENT, 0 ms] (6) IRSwT (7) IntTRSUnneededArgumentFilterProof [EQUIVALENT, 0 ms] (8) IRSwT (9) TempFilterProof [SOUND, 17 ms] (10) IntTRS (11) PolynomialOrderProcessor [EQUIVALENT, 0 ms] (12) YES ---------------------------------------- (0) Obligation: Rules: l0(iEXCL14HAT0, iEXCL22HAT0, resultEXCL12HAT0, temp0EXCL15HAT0) -> l1(iEXCL14HATpost, iEXCL22HATpost, resultEXCL12HATpost, temp0EXCL15HATpost) :|: iEXCL14HAT1 = 0 && 0 <= iEXCL14HAT1 && iEXCL14HAT1 <= 0 && 0 <= iEXCL14HAT1 && iEXCL14HAT1 <= 0 && 1 + iEXCL14HAT1 <= 10 && iEXCL14HAT2 = 1 + iEXCL14HAT1 && 1 <= iEXCL14HAT2 && iEXCL14HAT2 <= 1 && 1 <= iEXCL14HAT2 && iEXCL14HAT2 <= 1 && 1 + iEXCL14HAT2 <= 10 && iEXCL14HATpost = 1 + iEXCL14HAT2 && 2 <= iEXCL14HATpost && iEXCL14HATpost <= 2 && iEXCL22HAT0 = iEXCL22HATpost && resultEXCL12HAT0 = resultEXCL12HATpost && temp0EXCL15HAT0 = temp0EXCL15HATpost l1(x, x1, x2, x3) -> l2(x4, x5, x6, x7) :|: x3 = x7 && x1 = x5 && x = x4 && x6 = x3 && 10 <= x l1(x8, x9, x10, x11) -> l3(x12, x13, x14, x15) :|: x11 = x15 && x10 = x14 && x9 = x13 && 1 + x9 <= 10 && 1 + x9 <= x12 && x12 <= 1 + x9 && x12 = 1 + x8 && 1 + x8 <= 10 l3(x16, x17, x18, x19) -> l1(x20, x21, x22, x23) :|: x19 = x23 && x18 = x22 && x17 = x21 && x16 = x20 l4(x24, x25, x26, x27) -> l0(x28, x29, x30, x31) :|: x27 = x31 && x26 = x30 && x25 = x29 && x24 = x28 Start term: l4(iEXCL14HAT0, iEXCL22HAT0, resultEXCL12HAT0, temp0EXCL15HAT0) ---------------------------------------- (1) IRSFormatTransformerProof (EQUIVALENT) Reformatted IRS to match normalized format (transformed away non-linear left-hand sides, !=, / and %). ---------------------------------------- (2) Obligation: Rules: l0(iEXCL14HAT0, iEXCL22HAT0, resultEXCL12HAT0, temp0EXCL15HAT0) -> l1(iEXCL14HATpost, iEXCL22HATpost, resultEXCL12HATpost, temp0EXCL15HATpost) :|: iEXCL14HAT1 = 0 && 0 <= iEXCL14HAT1 && iEXCL14HAT1 <= 0 && 0 <= iEXCL14HAT1 && iEXCL14HAT1 <= 0 && 1 + iEXCL14HAT1 <= 10 && iEXCL14HAT2 = 1 + iEXCL14HAT1 && 1 <= iEXCL14HAT2 && iEXCL14HAT2 <= 1 && 1 <= iEXCL14HAT2 && iEXCL14HAT2 <= 1 && 1 + iEXCL14HAT2 <= 10 && iEXCL14HATpost = 1 + iEXCL14HAT2 && 2 <= iEXCL14HATpost && iEXCL14HATpost <= 2 && iEXCL22HAT0 = iEXCL22HATpost && resultEXCL12HAT0 = resultEXCL12HATpost && temp0EXCL15HAT0 = temp0EXCL15HATpost l1(x, x1, x2, x3) -> l2(x4, x5, x6, x7) :|: x3 = x7 && x1 = x5 && x = x4 && x6 = x3 && 10 <= x l1(x8, x9, x10, x11) -> l3(x12, x13, x14, x15) :|: x11 = x15 && x10 = x14 && x9 = x13 && 1 + x9 <= 10 && 1 + x9 <= x12 && x12 <= 1 + x9 && x12 = 1 + x8 && 1 + x8 <= 10 l3(x16, x17, x18, x19) -> l1(x20, x21, x22, x23) :|: x19 = x23 && x18 = x22 && x17 = x21 && x16 = x20 l4(x24, x25, x26, x27) -> l0(x28, x29, x30, x31) :|: x27 = x31 && x26 = x30 && x25 = x29 && x24 = x28 Start term: l4(iEXCL14HAT0, iEXCL22HAT0, resultEXCL12HAT0, temp0EXCL15HAT0) ---------------------------------------- (3) IRSwTTerminationDigraphProof (EQUIVALENT) Constructed termination digraph! Nodes: (1) l0(iEXCL14HAT0, iEXCL22HAT0, resultEXCL12HAT0, temp0EXCL15HAT0) -> l1(iEXCL14HATpost, iEXCL22HATpost, resultEXCL12HATpost, temp0EXCL15HATpost) :|: iEXCL14HAT1 = 0 && 0 <= iEXCL14HAT1 && iEXCL14HAT1 <= 0 && 0 <= iEXCL14HAT1 && iEXCL14HAT1 <= 0 && 1 + iEXCL14HAT1 <= 10 && iEXCL14HAT2 = 1 + iEXCL14HAT1 && 1 <= iEXCL14HAT2 && iEXCL14HAT2 <= 1 && 1 <= iEXCL14HAT2 && iEXCL14HAT2 <= 1 && 1 + iEXCL14HAT2 <= 10 && iEXCL14HATpost = 1 + iEXCL14HAT2 && 2 <= iEXCL14HATpost && iEXCL14HATpost <= 2 && iEXCL22HAT0 = iEXCL22HATpost && resultEXCL12HAT0 = resultEXCL12HATpost && temp0EXCL15HAT0 = temp0EXCL15HATpost (2) l1(x, x1, x2, x3) -> l2(x4, x5, x6, x7) :|: x3 = x7 && x1 = x5 && x = x4 && x6 = x3 && 10 <= x (3) l1(x8, x9, x10, x11) -> l3(x12, x13, x14, x15) :|: x11 = x15 && x10 = x14 && x9 = x13 && 1 + x9 <= 10 && 1 + x9 <= x12 && x12 <= 1 + x9 && x12 = 1 + x8 && 1 + x8 <= 10 (4) l3(x16, x17, x18, x19) -> l1(x20, x21, x22, x23) :|: x19 = x23 && x18 = x22 && x17 = x21 && x16 = x20 (5) l4(x24, x25, x26, x27) -> l0(x28, x29, x30, x31) :|: x27 = x31 && x26 = x30 && x25 = x29 && x24 = x28 Arcs: (1) -> (3) (3) -> (4) (4) -> (2), (3) (5) -> (1) This digraph is fully evaluated! ---------------------------------------- (4) Obligation: Termination digraph: Nodes: (1) l1(x8, x9, x10, x11) -> l3(x12, x13, x14, x15) :|: x11 = x15 && x10 = x14 && x9 = x13 && 1 + x9 <= 10 && 1 + x9 <= x12 && x12 <= 1 + x9 && x12 = 1 + x8 && 1 + x8 <= 10 (2) l3(x16, x17, x18, x19) -> l1(x20, x21, x22, x23) :|: x19 = x23 && x18 = x22 && x17 = x21 && x16 = x20 Arcs: (1) -> (2) (2) -> (1) This digraph is fully evaluated! ---------------------------------------- (5) IntTRSCompressionProof (EQUIVALENT) Compressed rules. ---------------------------------------- (6) Obligation: Rules: l1(x8:0, x13:0, x10:0, x11:0) -> l1(1 + x8:0, x13:0, x10:0, x11:0) :|: x13:0 < 10 && 1 + x8:0 = 1 + x13:0 && x8:0 < 10 ---------------------------------------- (7) IntTRSUnneededArgumentFilterProof (EQUIVALENT) Some arguments are removed because they cannot influence termination. We removed arguments according to the following replacements: l1(x1, x2, x3, x4) -> l1(x1, x2) ---------------------------------------- (8) Obligation: Rules: l1(x8:0, x13:0) -> l1(1 + x8:0, x13:0) :|: x13:0 < 10 && 1 + x8:0 = 1 + x13:0 && x8:0 < 10 ---------------------------------------- (9) TempFilterProof (SOUND) Used the following sort dictionary for filtering: l1(INTEGER, INTEGER) Replaced non-predefined constructor symbols by 0. ---------------------------------------- (10) Obligation: Rules: l1(x8:0, x13:0) -> l1(c, x13:0) :|: c = 1 + x8:0 && (x13:0 < 10 && 1 + x8:0 = 1 + x13:0 && x8:0 < 10) ---------------------------------------- (11) PolynomialOrderProcessor (EQUIVALENT) Found the following polynomial interpretation: [l1(x, x1)] = 9 - x The following rules are decreasing: l1(x8:0, x13:0) -> l1(c, x13:0) :|: c = 1 + x8:0 && (x13:0 < 10 && 1 + x8:0 = 1 + x13:0 && x8:0 < 10) The following rules are bounded: l1(x8:0, x13:0) -> l1(c, x13:0) :|: c = 1 + x8:0 && (x13:0 < 10 && 1 + x8:0 = 1 + x13:0 && x8:0 < 10) ---------------------------------------- (12) YES