WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ 1==arg1P_1 && arg2==arg2P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1==arg1P_2 ], cost: 1 10: f3 -> f4 : arg1'=arg1P_11, arg2'=arg2P_11, [ arg1>0 && arg1==arg1P_11 && arg2==arg2P_11 ], cost: 1 12: f3 -> f12 : arg1'=arg1P_13, arg2'=arg2P_13, [ arg1<=0 && arg1==arg1P_13 && arg2==arg2P_13 ], cost: 1 2: f5 -> f8 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2P_3==-10+arg2 && arg1==arg1P_3 ], cost: 1 3: f8 -> f9 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg1P_4==-1+arg1 && arg2==arg2P_4 ], cost: 1 8: f9 -> f7 : arg1'=arg1P_9, arg2'=arg2P_9, [ arg1==arg1P_9 && arg2==arg2P_9 ], cost: 1 4: f6 -> f10 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg2P_5==11+arg2 && arg1==arg1P_5 ], cost: 1 5: f10 -> f11 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1P_6==1+arg1 && arg2==arg2P_6 ], cost: 1 9: f11 -> f7 : arg1'=arg1P_10, arg2'=arg2P_10, [ arg1==arg1P_10 && arg2==arg2P_10 ], cost: 1 6: f4 -> f5 : arg1'=arg1P_7, arg2'=arg2P_7, [ arg2>100 && arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 7: f4 -> f6 : arg1'=arg1P_8, arg2'=arg2P_8, [ arg2<=100 && arg1==arg1P_8 && arg2==arg2P_8 ], cost: 1 11: f7 -> f3 : arg1'=arg1P_12, arg2'=arg2P_12, [ arg1==arg1P_12 && arg2==arg2P_12 ], cost: 1 13: __init -> f1 : arg1'=arg1P_14, arg2'=arg2P_14, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 13: __init -> f1 : arg1'=arg1P_14, arg2'=arg2P_14, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, [ 1==arg1P_1 && arg2==arg2P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, [ arg1==arg1P_2 ], cost: 1 10: f3 -> f4 : arg1'=arg1P_11, arg2'=arg2P_11, [ arg1>0 && arg1==arg1P_11 && arg2==arg2P_11 ], cost: 1 2: f5 -> f8 : arg1'=arg1P_3, arg2'=arg2P_3, [ arg2P_3==-10+arg2 && arg1==arg1P_3 ], cost: 1 3: f8 -> f9 : arg1'=arg1P_4, arg2'=arg2P_4, [ arg1P_4==-1+arg1 && arg2==arg2P_4 ], cost: 1 8: f9 -> f7 : arg1'=arg1P_9, arg2'=arg2P_9, [ arg1==arg1P_9 && arg2==arg2P_9 ], cost: 1 4: f6 -> f10 : arg1'=arg1P_5, arg2'=arg2P_5, [ arg2P_5==11+arg2 && arg1==arg1P_5 ], cost: 1 5: f10 -> f11 : arg1'=arg1P_6, arg2'=arg2P_6, [ arg1P_6==1+arg1 && arg2==arg2P_6 ], cost: 1 9: f11 -> f7 : arg1'=arg1P_10, arg2'=arg2P_10, [ arg1==arg1P_10 && arg2==arg2P_10 ], cost: 1 6: f4 -> f5 : arg1'=arg1P_7, arg2'=arg2P_7, [ arg2>100 && arg1==arg1P_7 && arg2==arg2P_7 ], cost: 1 7: f4 -> f6 : arg1'=arg1P_8, arg2'=arg2P_8, [ arg2<=100 && arg1==arg1P_8 && arg2==arg2P_8 ], cost: 1 11: f7 -> f3 : arg1'=arg1P_12, arg2'=arg2P_12, [ arg1==arg1P_12 && arg2==arg2P_12 ], cost: 1 13: __init -> f1 : arg1'=arg1P_14, arg2'=arg2P_14, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=1, [], cost: 1 1: f2 -> f3 : arg2'=arg2P_2, [], cost: 1 10: f3 -> f4 : [ arg1>0 ], cost: 1 2: f5 -> f8 : arg2'=-10+arg2, [], cost: 1 3: f8 -> f9 : arg1'=-1+arg1, [], cost: 1 8: f9 -> f7 : [], cost: 1 4: f6 -> f10 : arg2'=11+arg2, [], cost: 1 5: f10 -> f11 : arg1'=1+arg1, [], cost: 1 9: f11 -> f7 : [], cost: 1 6: f4 -> f5 : [ arg2>100 ], cost: 1 7: f4 -> f6 : [ arg2<=100 ], cost: 1 11: f7 -> f3 : [], cost: 1 13: __init -> f1 : arg1'=arg1P_14, arg2'=arg2P_14, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 10: f3 -> f4 : [ arg1>0 ], cost: 1 20: f4 -> f7 : arg1'=-1+arg1, arg2'=-10+arg2, [ arg2>100 ], cost: 4 21: f4 -> f7 : arg1'=1+arg1, arg2'=11+arg2, [ arg2<=100 ], cost: 4 11: f7 -> f3 : [], cost: 1 15: __init -> f3 : arg1'=1, arg2'=arg2P_2, [], cost: 3 Eliminated locations (on tree-shaped paths): Start location: __init 22: f3 -> f7 : arg1'=-1+arg1, arg2'=-10+arg2, [ arg1>0 && arg2>100 ], cost: 5 23: f3 -> f7 : arg1'=1+arg1, arg2'=11+arg2, [ arg1>0 && arg2<=100 ], cost: 5 11: f7 -> f3 : [], cost: 1 15: __init -> f3 : arg1'=1, arg2'=arg2P_2, [], cost: 3 Eliminated locations (on tree-shaped paths): Start location: __init 24: f3 -> f3 : arg1'=-1+arg1, arg2'=-10+arg2, [ arg1>0 && arg2>100 ], cost: 6 25: f3 -> f3 : arg1'=1+arg1, arg2'=11+arg2, [ arg1>0 && arg2<=100 ], cost: 6 15: __init -> f3 : arg1'=1, arg2'=arg2P_2, [], cost: 3 Accelerating simple loops of location 2. Accelerating the following rules: 24: f3 -> f3 : arg1'=-1+arg1, arg2'=-10+arg2, [ arg1>0 && arg2>100 ], cost: 6 25: f3 -> f3 : arg1'=1+arg1, arg2'=11+arg2, [ arg1>0 && arg2<=100 ], cost: 6 Accelerated rule 24 with backward acceleration, yielding the new rule 26. Accelerated rule 25 with backward acceleration, yielding the new rule 27. [accelerate] Nesting with 2 inner and 2 outer candidates Removing the simple loops: 24 25. Accelerated all simple loops using metering functions (where possible): Start location: __init 26: f3 -> f3 : arg1'=-k+arg1, arg2'=-10*k+arg2, [ k>=0 && 1-k+arg1>0 && 10-10*k+arg2>100 ], cost: 6*k 27: f3 -> f3 : arg1'=k_1+arg1, arg2'=11*k_1+arg2, [ arg1>0 && k_1>=0 && -11+11*k_1+arg2<=100 ], cost: 6*k_1 15: __init -> f3 : arg1'=1, arg2'=arg2P_2, [], cost: 3 Chained accelerated rules (with incoming rules): Start location: __init 15: __init -> f3 : arg1'=1, arg2'=arg2P_2, [], cost: 3 28: __init -> f3 : arg1'=1-k, arg2'=-10*k+arg2P_2, [ k>=0 && 2-k>0 && 10-10*k+arg2P_2>100 ], cost: 3+6*k 29: __init -> f3 : arg1'=1+k_1, arg2'=arg2P_2+11*k_1, [ k_1>=0 && -11+arg2P_2+11*k_1<=100 ], cost: 3+6*k_1 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 28: __init -> f3 : arg1'=1-k, arg2'=-10*k+arg2P_2, [ k>=0 && 2-k>0 && 10-10*k+arg2P_2>100 ], cost: 3+6*k 29: __init -> f3 : arg1'=1+k_1, arg2'=arg2P_2+11*k_1, [ k_1>=0 && -11+arg2P_2+11*k_1<=100 ], cost: 3+6*k_1 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 28: __init -> f3 : arg1'=1-k, arg2'=-10*k+arg2P_2, [ k>=0 && 2-k>0 && 10-10*k+arg2P_2>100 ], cost: 3+6*k 29: __init -> f3 : arg1'=1+k_1, arg2'=arg2P_2+11*k_1, [ k_1>=0 && -11+arg2P_2+11*k_1<=100 ], cost: 3+6*k_1 Computing asymptotic complexity for rule 29 Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 28 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)