WORST_CASE(Omega(1),?) ### Pre-processing the ITS problem ### Initial linear ITS problem Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg3==arg3P_2 ], cost: 1 5: f3 -> f4 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ arg1>=0 && arg1==arg1P_6 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 6: f3 -> f4 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg2>=0 && arg1==arg1P_7 && arg2==arg2P_7 && arg3==arg3P_7 ], cost: 1 8: f3 -> f8 : arg1'=arg1P_9, arg2'=arg2P_9, arg3'=arg3P_9, [ arg1<0 && arg2<0 && arg1==arg1P_9 && arg2==arg2P_9 && arg3==arg3P_9 ], cost: 1 2: f4 -> f5 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1==arg1P_3 && arg2==arg2P_3 && arg1==arg3P_3 ], cost: 1 3: f5 -> f6 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg1P_4==-1+arg2 && arg2==arg2P_4 && arg3==arg3P_4 ], cost: 1 4: f6 -> f7 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg2P_5==-1+arg3 && arg1==arg1P_5 && arg3==arg3P_5 ], cost: 1 7: f7 -> f3 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, [ arg1==arg1P_8 && arg2==arg2P_8 && arg3==arg3P_8 ], cost: 1 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [], cost: 1 Checking for constant complexity: The following rule is satisfiable with cost >= 1, yielding constant complexity: 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [], cost: 1 Removed unreachable and leaf rules: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, arg2'=arg2P_1, arg3'=arg3P_1, [ arg2==arg2P_1 && arg3==arg3P_1 ], cost: 1 1: f2 -> f3 : arg1'=arg1P_2, arg2'=arg2P_2, arg3'=arg3P_2, [ arg1==arg1P_2 && arg3==arg3P_2 ], cost: 1 5: f3 -> f4 : arg1'=arg1P_6, arg2'=arg2P_6, arg3'=arg3P_6, [ arg1>=0 && arg1==arg1P_6 && arg2==arg2P_6 && arg3==arg3P_6 ], cost: 1 6: f3 -> f4 : arg1'=arg1P_7, arg2'=arg2P_7, arg3'=arg3P_7, [ arg2>=0 && arg1==arg1P_7 && arg2==arg2P_7 && arg3==arg3P_7 ], cost: 1 2: f4 -> f5 : arg1'=arg1P_3, arg2'=arg2P_3, arg3'=arg3P_3, [ arg1==arg1P_3 && arg2==arg2P_3 && arg1==arg3P_3 ], cost: 1 3: f5 -> f6 : arg1'=arg1P_4, arg2'=arg2P_4, arg3'=arg3P_4, [ arg1P_4==-1+arg2 && arg2==arg2P_4 && arg3==arg3P_4 ], cost: 1 4: f6 -> f7 : arg1'=arg1P_5, arg2'=arg2P_5, arg3'=arg3P_5, [ arg2P_5==-1+arg3 && arg1==arg1P_5 && arg3==arg3P_5 ], cost: 1 7: f7 -> f3 : arg1'=arg1P_8, arg2'=arg2P_8, arg3'=arg3P_8, [ arg1==arg1P_8 && arg2==arg2P_8 && arg3==arg3P_8 ], cost: 1 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [], cost: 1 Simplified all rules, resulting in: Start location: __init 0: f1 -> f2 : arg1'=arg1P_1, [], cost: 1 1: f2 -> f3 : arg2'=arg2P_2, [], cost: 1 5: f3 -> f4 : [ arg1>=0 ], cost: 1 6: f3 -> f4 : [ arg2>=0 ], cost: 1 2: f4 -> f5 : arg3'=arg1, [], cost: 1 3: f5 -> f6 : arg1'=-1+arg2, [], cost: 1 4: f6 -> f7 : arg2'=-1+arg3, [], cost: 1 7: f7 -> f3 : [], cost: 1 9: __init -> f1 : arg1'=arg1P_10, arg2'=arg2P_10, arg3'=arg3P_10, [], cost: 1 ### Simplification by acceleration and chaining ### Eliminated locations (on linear paths): Start location: __init 5: f3 -> f4 : [ arg1>=0 ], cost: 1 6: f3 -> f4 : [ arg2>=0 ], cost: 1 14: f4 -> f3 : arg1'=-1+arg2, arg2'=-1+arg1, arg3'=arg1, [], cost: 4 11: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_10, [], cost: 3 Eliminated locations (on tree-shaped paths): Start location: __init 15: f3 -> f3 : arg1'=-1+arg2, arg2'=-1+arg1, arg3'=arg1, [ arg1>=0 ], cost: 5 16: f3 -> f3 : arg1'=-1+arg2, arg2'=-1+arg1, arg3'=arg1, [ arg2>=0 ], cost: 5 11: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_10, [], cost: 3 Accelerating simple loops of location 2. Accelerating the following rules: 15: f3 -> f3 : arg1'=-1+arg2, arg2'=-1+arg1, arg3'=arg1, [ arg1>=0 ], cost: 5 16: f3 -> f3 : arg1'=-1+arg2, arg2'=-1+arg1, arg3'=arg1, [ arg2>=0 ], cost: 5 Accelerated rule 15 with backward acceleration, yielding the new rule 17. Accelerated rule 16 with backward acceleration, yielding the new rule 18. [accelerate] Nesting with 2 inner and 2 outer candidates Removing the simple loops: 15 16. Accelerated all simple loops using metering functions (where possible): Start location: __init 17: f3 -> f3 : arg1'=-2*k+arg1, arg2'=arg2-2*k, arg3'=1+arg2-2*k, [ k>=1 && 2-2*k+arg1>=0 && 1+arg2-2*k>=0 ], cost: 10*k 18: f3 -> f3 : arg1'=-2*k_1+arg1, arg2'=arg2-2*k_1, arg3'=1+arg2-2*k_1, [ k_1>=1 && 2+arg2-2*k_1>=0 && 1-2*k_1+arg1>=0 ], cost: 10*k_1 11: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_10, [], cost: 3 Chained accelerated rules (with incoming rules): Start location: __init 11: __init -> f3 : arg1'=arg1P_1, arg2'=arg2P_2, arg3'=arg3P_10, [], cost: 3 19: __init -> f3 : arg1'=-2*k+arg1P_1, arg2'=-2*k+arg2P_2, arg3'=1-2*k+arg2P_2, [ k>=1 && 2-2*k+arg1P_1>=0 && 1-2*k+arg2P_2>=0 ], cost: 3+10*k 20: __init -> f3 : arg1'=arg1P_1-2*k_1, arg2'=-2*k_1+arg2P_2, arg3'=1-2*k_1+arg2P_2, [ k_1>=1 && 2-2*k_1+arg2P_2>=0 && 1+arg1P_1-2*k_1>=0 ], cost: 3+10*k_1 Removed unreachable locations (and leaf rules with constant cost): Start location: __init 19: __init -> f3 : arg1'=-2*k+arg1P_1, arg2'=-2*k+arg2P_2, arg3'=1-2*k+arg2P_2, [ k>=1 && 2-2*k+arg1P_1>=0 && 1-2*k+arg2P_2>=0 ], cost: 3+10*k 20: __init -> f3 : arg1'=arg1P_1-2*k_1, arg2'=-2*k_1+arg2P_2, arg3'=1-2*k_1+arg2P_2, [ k_1>=1 && 2-2*k_1+arg2P_2>=0 && 1+arg1P_1-2*k_1>=0 ], cost: 3+10*k_1 ### Computing asymptotic complexity ### Fully simplified ITS problem Start location: __init 19: __init -> f3 : arg1'=-2*k+arg1P_1, arg2'=-2*k+arg2P_2, arg3'=1-2*k+arg2P_2, [ k>=1 && 2-2*k+arg1P_1>=0 && 1-2*k+arg2P_2>=0 ], cost: 3+10*k 20: __init -> f3 : arg1'=arg1P_1-2*k_1, arg2'=-2*k_1+arg2P_2, arg3'=1-2*k_1+arg2P_2, [ k_1>=1 && 2-2*k_1+arg2P_2>=0 && 1+arg1P_1-2*k_1>=0 ], cost: 3+10*k_1 Computing asymptotic complexity for rule 19 Resulting cost 0 has complexity: Unknown Computing asymptotic complexity for rule 20 Resulting cost 0 has complexity: Unknown Obtained the following overall complexity (w.r.t. the length of the input n): Complexity: Constant Cpx degree: 0 Solved cost: 1 Rule cost: 1 Rule guard: [] WORST_CASE(Omega(1),?)